update notations and fix typos

This commit is contained in:
Zheyuan Wu
2025-02-25 20:41:35 -06:00
parent 419ea07352
commit 27bff83685
71 changed files with 920 additions and 430 deletions

View File

@@ -96,7 +96,7 @@ We wait for $R$ times and then take the stairs. In worst case, we wait for $R$ t
Competitive ratio = $\frac{2R}{R}=2$. Competitive ratio = $\frac{2R}{R}=2$.
EOP QED
Let's try $R=S-E$ instead. Let's try $R=S-E$ instead.
@@ -116,7 +116,7 @@ We wait for $R=S-E$ times and then take the stairs.
Competitive ratio = $\frac{S-E+S}{S}=2-\frac{E}{S}$. Competitive ratio = $\frac{S-E+S}{S}=2-\frac{E}{S}$.
EOP QED
What if we wait less time? Let's try $R=S-E-\epsilon$ for some $\epsilon>0$ What if we wait less time? Let's try $R=S-E-\epsilon$ for some $\epsilon>0$
@@ -174,7 +174,7 @@ The optimal offline solution: In each subsequence, must have at least $1$ miss.
So the competitive ratio is at most $k+1$. So the competitive ratio is at most $k+1$.
EOP QED
Using similar analysis, we can show that LRU is $k$ competitive. Using similar analysis, we can show that LRU is $k$ competitive.
@@ -184,7 +184,7 @@ Split the sequence into subsequences such that each subsequence LRU has $k$ miss
Argue that OPT has at least $1$ miss in each subsequence. Argue that OPT has at least $1$ miss in each subsequence.
EOP QED
#### Many sensible algorithms are $k$-competitive #### Many sensible algorithms are $k$-competitive
@@ -210,7 +210,7 @@ So competitive ratio is at most $\frac{ck}{(c-1)k}=\frac{c}{c-1}$.
_Actual competitive ratio is $\sim \frac{c}{c-1+\frac{1}{k}}$._ _Actual competitive ratio is $\sim \frac{c}{c-1+\frac{1}{k}}$._
EOP QED
### Conclusion ### Conclusion
@@ -297,7 +297,7 @@ Let $P$ be a page in the cache with probability $1-\frac{1}{k}$.
With probability $\frac{1}{k}$, $P$ is not in the cache and RAND evicts $P'$ in the cache and brings $P$ to the cache. With probability $\frac{1}{k}$, $P$ is not in the cache and RAND evicts $P'$ in the cache and brings $P$ to the cache.
EOP QED
MRU is $k$-competitive. MRU is $k$-competitive.
@@ -317,4 +317,4 @@ Let's define the random variable $X$ as the number of misses of RAND MRU.
$E[X]\leq 1+\frac{1}{k}$. $E[X]\leq 1+\frac{1}{k}$.
EOP QED

View File

@@ -161,7 +161,7 @@ $ISET(G,k)$ returns true if $G$ contains an independent set of size $\geq k$, a
Algorithm? NO! We think that this is a hard problem. Algorithm? NO! We think that this is a hard problem.
A lot of people have tried and could not find a poly-time solution A lot of pQEDle have tried and could not find a poly-time solution
### Example: Vertex Cover (VC) ### Example: Vertex Cover (VC)

View File

@@ -154,7 +154,7 @@ This is a valid assignment since:
- We pick either $v_i$ or $\overline{v_i}$ - We pick either $v_i$ or $\overline{v_i}$
- For each clause, at least one literal is true - For each clause, at least one literal is true
EOP QED
Claim 2: If $\Psi$ is satisfiable, then Subset Sum has a solution. Claim 2: If $\Psi$ is satisfiable, then Subset Sum has a solution.
@@ -174,7 +174,7 @@ Say $t=\sum$ elements we picked from $S$.
- If $q_j=2$, then $z_j\in S'$ - If $q_j=2$, then $z_j\in S'$
- If $q_j=3$, then $y_j\in S'$ - If $q_j=3$, then $y_j\in S'$
EOP QED
### Example 2: 3 Color ### Example 2: 3 Color
@@ -228,13 +228,13 @@ For each dangler color is connected to blue, all literals cannot be blue.
... ...
EOP QED
Direction 2: If $G$ is 3-colorable, then $\Psi$ is satisfiable. Direction 2: If $G$ is 3-colorable, then $\Psi$ is satisfiable.
Proof: Proof:
EOP QED
### Example 3:Hamiltonian cycle problem (HAMCYCLE) ### Example 3:Hamiltonian cycle problem (HAMCYCLE)

View File

@@ -153,7 +153,7 @@ Summing over all vertices, the total number of crossing edges is at least $\frac
So the total number of non-crossing edges is at most $\frac{|E|}{2}$. So the total number of non-crossing edges is at most $\frac{|E|}{2}$.
EOP QED
#### Set cover #### Set cover
@@ -264,7 +264,7 @@ So $n(1-\frac{1}{k})^{|C|-1}=1$, $|C|\leq 1+k\ln n$.
So the size of the set cover found is at most $(1+\ln n)k$. So the size of the set cover found is at most $(1+\ln n)k$.
EOP QED
So the greedy set cover is not too bad... So the greedy set cover is not too bad...
@@ -350,4 +350,4 @@ $$
So the approximation ratio for greedy set cover is $H_d$. So the approximation ratio for greedy set cover is $H_d$.
EOP QED

View File

@@ -296,7 +296,7 @@ If $c'\geq 8c$, then $T(n)\leq c'n\log n+1$.
$E[T(n)]\leq c'n\log n+1=O(n\log n)$ $E[T(n)]\leq c'n\log n+1=O(n\log n)$
EOP QED
A more elegant proof: A more elegant proof:
@@ -345,5 +345,5 @@ E[X]&=\sum_{i=0}^{n-2}\sum_{j=i+1}^{n-1}\frac{2}{j-i+1}\\
$$ $$
EOP QED

View File

@@ -98,7 +98,7 @@ $x_1\equiv x_2\mod N$
So it's one-to-one. So it's one-to-one.
EOP QED
Let $y\in \mathbb{Z}_N^*$, letting $x=y^d\mod N$, where $d\equiv e^{-1}\mod \phi(N)$ Let $y\in \mathbb{Z}_N^*$, letting $x=y^d\mod N$, where $d\equiv e^{-1}\mod \phi(N)$
@@ -130,7 +130,7 @@ By RSA assumption
The second equality follows because for any finite $D$ and bijection $f:D\to D$, sampling $y\in D$ directly is equivalent to sampling $x\gets D$, then computing $y=f(x)$. The second equality follows because for any finite $D$ and bijection $f:D\to D$, sampling $y\in D$ directly is equivalent to sampling $x\gets D$, then computing $y=f(x)$.
EOP QED
#### Theorem If inverting RSA is hard, then factoring is hard. #### Theorem If inverting RSA is hard, then factoring is hard.

View File

@@ -119,7 +119,7 @@ $\mathcal{D}$ can distinguish $x_{i+1}$ from a truly random $U_{i+1}$, knowing t
So $\mathcal{D}$ can predict $x_{i+1}$ from $x_1\dots x_i$ (contradicting with that $X$ passes NBT) So $\mathcal{D}$ can predict $x_{i+1}$ from $x_1\dots x_i$ (contradicting with that $X$ passes NBT)
EOP QED
## Pseudorandom Generator ## Pseudorandom Generator

View File

@@ -186,4 +186,4 @@ By hybrid argument, there exists a hybrid $H_i$ such that $D$ distinguishes $H_i
For $H_0$, For $H_0$,
EOP QED

View File

@@ -35,7 +35,7 @@ $(r_1,F(r_1)),\ldots, (r_q,F(r_q))$
So $D$ distinguishing output of $r_1,\ldots, r_q$ of PRF from the RF, this contradicts with definition of PRF. So $D$ distinguishing output of $r_1,\ldots, r_q$ of PRF from the RF, this contradicts with definition of PRF.
EOP QED
Noe we have Noe we have

View File

@@ -76,7 +76,7 @@ $$
This contradicts the definition of hardcore bit. This contradicts the definition of hardcore bit.
EOP QED
### Public key encryption scheme (multi-bit) ### Public key encryption scheme (multi-bit)
@@ -155,5 +155,5 @@ $$
And proceed by contradiction. This contradicts the DDH assumption. And proceed by contradiction. This contradicts the DDH assumption.
EOP QED

View File

@@ -72,7 +72,7 @@ So $\mathcal{B}$ can break the discrete log assumption with non-negligible proba
So $h$ is a CRHF. So $h$ is a CRHF.
EOP QED
To compress by more, say $h_k:{0,1}^n\to \{0,1\}^{n-k},k\geq 1$, then we can use $h: \{0,1\}^{n+1}\to \{0,1\}^n$ multiple times. To compress by more, say $h_k:{0,1}^n\to \{0,1\}^{n-k},k\geq 1$, then we can use $h: \{0,1\}^{n+1}\to \{0,1\}^n$ multiple times.
@@ -119,7 +119,7 @@ Case 1: $h_i(m_1)=h_i(m_2)$, Then $\mathcal{A}$ finds a collision of $h$.
Case 2: $h_i(m_1)\neq h_i(m_2)$, Then $\mathcal{A}$ produced valid signature on $h_i(m_2)$ after only seeing $Sign'_{sk'}(m_1)\neq Sign'_{sk'}(m_2)$. This contradicts the one-time secure of ($Gen,Sign,Ver$). Case 2: $h_i(m_1)\neq h_i(m_2)$, Then $\mathcal{A}$ produced valid signature on $h_i(m_2)$ after only seeing $Sign'_{sk'}(m_1)\neq Sign'_{sk'}(m_2)$. This contradicts the one-time secure of ($Gen,Sign,Ver$).
EOP QED
### Many-time Secure Digital Signature ### Many-time Secure Digital Signature

View File

@@ -98,7 +98,7 @@ Proof:
Then $P[a$ inverting $g]\sim P[a$ inverts $f$ all $q(n)]$ times. $<(1-\frac{1}{p(n)})^{q(n)}=(1-\frac{1}{p(n)})^{np(n)}<(e^{-\frac{1}{p(n)}})^{np(n)}=e^{-n}$ which is negligible function. Then $P[a$ inverting $g]\sim P[a$ inverts $f$ all $q(n)]$ times. $<(1-\frac{1}{p(n)})^{q(n)}=(1-\frac{1}{p(n)})^{np(n)}<(e^{-\frac{1}{p(n)}})^{np(n)}=e^{-n}$ which is negligible function.
EOP QED
_we can always force the adversary to invert the weak one-way function for polynomial time to reach the property of strong one-way function_ _we can always force the adversary to invert the weak one-way function for polynomial time to reach the property of strong one-way function_

View File

@@ -2,6 +2,58 @@
## Positional Encodings ## Positional Encodings
### Fixed Positional Encodings
Set of sinusoids of different frequencies.
$$
f(p,2i)=\sin(\frac{p}{10000^{2i/d}})\quad f(p,2i+1)=\cos(\frac{p}{10000^{2i/d}})\
$$
[source](https://kazemnejad.com/blog/transformer_architecture_positional_encoding/)
### Positional Encodings in Reconstruction
MLP is hard to learn high-frequency information from scaler input $(x,y)$.
Example: network mapping from $(x,y)$ to $(r,g,b)$.
### Generalized Positional Encodings
- Dependence on location, scaler, metadata, etc.
- Can just be fully learned (use `nn.Embedding` and optimize based on a categorical input.)
## Vision Transformer (ViT) ## Vision Transformer (ViT)
### Class Token
In Vision Transformers, a special token called the class token is added to the input sequence to aggregate information for classification tasks.
### Hidden CNN Modules
- PxP convolution with stride P (split the image into patches and use positional encoding)
### ViT + ResNet Hybrid
Build a hybrid model that combines the vision transformer after 50 layer of ResNet.
## Moving Forward ## Moving Forward
At least for now, CNN and ViT architectures have similar performance at least in ImageNet.
- General Consensus: once the architecture is big enough, and not designed terribly, it can do well.
- Differences remain:
- Computational efficiency
- Ease of use in other tasks and with other input data
- Ease of training
## Wrap up
Self attention as a key building block
Flexible input specification using tokens with positional encodings
A wide variety of architectural styles
Up Next:
Training deep neural networks

View File

@@ -0,0 +1,82 @@
import torch
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
class MLPScalar(torch.nn.Module):
# Define your MLPScalar architecture here
def __init__(self):
super(MLPScalar, self).__init__()
# Example architecture
self.fc1 = torch.nn.Linear(2, 128)
self.fc2 = torch.nn.Linear(128, 3) # Outputs RGB
def forward(self, x):
x = torch.nn.functional.relu(self.fc1(x))
x = torch.sigmoid(self.fc2(x)) # Normalize output to [0, 1]
return x
class MLPPositional(torch.nn.Module):
# Define your MLPPositional architecture here
def __init__(self, num_frequencies=10, include_input=True):
super(MLPPositional, self).__init__()
# Example architecture
self.include_input = include_input
self.fc1 = torch.nn.Linear(2, 128)
self.fc2 = torch.nn.Linear(128, 3) # Outputs RGB
def forward(self, x):
if self.include_input:
# Process coordinates, add positional encoding here if needed
x = torch.cat([x, self.positional_encoding(x)], dim=-1)
x = torch.nn.functional.relu(self.fc1(x))
x = torch.sigmoid(self.fc2(x)) # Normalize output to [0, 1]
return x
def positional_encoding(self, x):
# Example positional encoding
return torch.cat([torch.sin(x * (2 ** i)) for i in range(10)], dim=-1)
if __name__ == '__main__':
# Load a real image
image_path = input()[1:-1] # Replace with your image file path
image = Image.open(image_path).convert('RGB')
# Normalize and resize the image
transform = transforms.Compose([
transforms.Resize((256, 256)), # Resize image to desired dimensions
transforms.ToTensor(), # Convert to Tensor and normalize to [0,1]
])
image_tensor = transform(image)
# Create dummy normalized coordinates (assume image coordinates normalized to [0,1])
coords = torch.rand(10, 2) # 10 random coordinate pairs
print("Input coordinates:")
print(coords)
# Test MLP with scalar input
model_scalar = MLPScalar()
out_scalar = model_scalar(coords)
print("\nMLPScalar output (RGB):")
print(out_scalar)
# Test MLP with positional encoding
model_positional = MLPPositional(num_frequencies=10, include_input=True)
out_positional = model_positional(coords)
print("\nMLPPositional output (RGB):")
print(out_positional)
# Optionally, use the output to create a new image
output_image = (out_positional.view(10, 1, 3) * 255).byte().numpy() # Reshape and scale
output_image = output_image.transpose(0, 2, 1) # Prepare for visualization
# Visualize the output
plt.figure(figsize=(10, 2))
for i in range(output_image.shape[0]):
plt.subplot(2, 5, i + 1)
plt.imshow(output_image[i].reshape(1, 3), aspect='auto')
plt.axis('off')
plt.show()

View File

@@ -22,7 +22,7 @@ Suppose $S$ and $T$ are compact, let $\{G_\alpha\}_{\alpha\in A}$ be an open cov
... ...
EOP QED
## K-cells are compact ## K-cells are compact
@@ -63,7 +63,7 @@ Let $n\in \mathbb{N}$ be such that $\frac{1}{2^n}<r$. Then by $(c)$, $I(n)\subse
Then $\{G_{\alpha_0}\}$ is a cover of $I_n$ which contradicts with (b) Then $\{G_{\alpha_0}\}$ is a cover of $I_n$ which contradicts with (b)
EOP QED
## Redundant subcover question ## Redundant subcover question

View File

@@ -36,7 +36,7 @@ So $m^2$ is divisible by 4, $2n^2$ is divisible by 4.
So $n^2$ is even. but they are not both even. So $n^2$ is even. but they are not both even.
EOP QED
### Theorem (No closest rational for a irrational number) ### Theorem (No closest rational for a irrational number)

View File

@@ -47,7 +47,7 @@ $\impliedby$ Suppose $K$ is compact relative to $Y$. Let $\{G_\alpha\}_{\alpha\i
Since $k$ is compact relative to $Y$, $\{G_\alpha\cap Y\}_\alpha$ has a finite subcover $\{G_{\alpha_i}\cap Y\}_{i=1}^n$. Then $\{G_{\alpha_i}\}_{i=1}^n$ is a finite subcover of $\{G_\alpha\}_{\alpha}$ of $K$. Since $k$ is compact relative to $Y$, $\{G_\alpha\cap Y\}_\alpha$ has a finite subcover $\{G_{\alpha_i}\cap Y\}_{i=1}^n$. Then $\{G_{\alpha_i}\}_{i=1}^n$ is a finite subcover of $\{G_\alpha\}_{\alpha}$ of $K$.
EOP QED
#### Theorem 2.24 #### Theorem 2.24

View File

@@ -31,7 +31,7 @@ And $(\bigcup_{\alpha\in A} G_\alpha)\cup F^c=X\supset K$ is an open cover of $K
Since $F\subset K$, So $\Phi$ is a cover of $F$ then $\Phi\backslash \{F^c\}$ is a finite subcover of $\{G_\alpha\}_{\alpha \in A}$ of $F$. Since $F\subset K$, So $\Phi$ is a cover of $F$ then $\Phi\backslash \{F^c\}$ is a finite subcover of $\{G_\alpha\}_{\alpha \in A}$ of $F$.
EOP QED
##### Corollary 2.35 ##### Corollary 2.35
@@ -57,7 +57,7 @@ Let $l=\max\{n_1,...,n_m\}$, then $K_l=\bigcap^{m}_{i=i} K_{n_i}$. So $K_1\subse
which contradicts with $K_l\subset K_1$ which contradicts with $K_l\subset K_1$
EOP QED
#### Theorem 2.37 #### Theorem 2.37
@@ -75,7 +75,7 @@ For each $q\in K, q\notin E'$, so $\exists$ neighborhood $\forall q\in B_{r_q}(q
Then $\{V_q\}_{q\in K}$ is an open cover of $K$ , so it has a finite subcover $\{V_{q_i}\}^n_{n=1}$. Then $E\subset K\subset \bigcup_{i=1}^n$, and $\forall i,V_{q_i}\cap E\subset \{q_i\}$, then $E\subset\{q_1,...,q_n\}$ Then $\{V_q\}_{q\in K}$ is an open cover of $K$ , so it has a finite subcover $\{V_{q_i}\}^n_{n=1}$. Then $E\subset K\subset \bigcup_{i=1}^n$, and $\forall i,V_{q_i}\cap E\subset \{q_i\}$, then $E\subset\{q_1,...,q_n\}$
EOP QED
#### Theorem 2.38 #### Theorem 2.38
@@ -101,4 +101,4 @@ Since $x$ is an upper bound of $E$ and $a_n\in E$, then $a_n\leq x$.
Since $x$ is the least upper bound of $E$, and $b_n$ is an upper bound of $E$, then $x\leq b_n$. $x\in E,E\neq \phi$ Since $x$ is the least upper bound of $E$, and $b_n$ is an upper bound of $E$, then $x\leq b_n$. $x\in E,E\neq \phi$
EOP QED

View File

@@ -20,7 +20,7 @@ Proof:
Fix $p\in X$, then $\{B_n(p)\}_{n\in \mathbb{N}}$ (specific open cover) is an open cover of $S$ (Since $\bigcup_{n\in \mathbb{N}}=X$). Since $S$ is compact, then $\exists$ a finite subcover ${n\in \mathbb{N}}_{i=1}^k=S$, let $r=max(n_1,...n_k)$, Then $S\subset B_r(p)$ Fix $p\in X$, then $\{B_n(p)\}_{n\in \mathbb{N}}$ (specific open cover) is an open cover of $S$ (Since $\bigcup_{n\in \mathbb{N}}=X$). Since $S$ is compact, then $\exists$ a finite subcover ${n\in \mathbb{N}}_{i=1}^k=S$, let $r=max(n_1,...n_k)$, Then $S\subset B_r(p)$
EOP QED
#### Definition k-cell #### Definition k-cell
@@ -74,7 +74,7 @@ Let $n\in \mathbb{N}$ be such that $\frac{1}{2^n}<r$. Then by $(c)$, $I(n)\subse
Then $\{G_{\alpha_0}\}$ is a cover of $I_n$ which contradicts with (b) Then $\{G_{\alpha_0}\}$ is a cover of $I_n$ which contradicts with (b)
EOP QED
#### Theorem 2.41 #### Theorem 2.41
@@ -131,4 +131,4 @@ $$
So $B_r(y)\cap S$ is finite. By **Theorem 2.20**, $y\notin S$, this proves the claim so $S'\cap E=\phi$ So $B_r(y)\cap S$ is finite. By **Theorem 2.20**, $y\notin S$, this proves the claim so $S'\cap E=\phi$
EOP QED

View File

@@ -90,7 +90,7 @@ Thus, $\exists r>0$ such that $(w-r,w+r)\cap B=\phi$.
Let $z=w+\frac{r}{2}$, then $x,y,z$ satisfy the desired properties. Let $z=w+\frac{r}{2}$, then $x,y,z$ satisfy the desired properties.
EOP QED
## Chapter 3: Numerical Sequences and Series ## Chapter 3: Numerical Sequences and Series
@@ -140,4 +140,4 @@ Let $n\geq N$ (arbitrary)
Then $|s_n-q|=\frac{1}{n}\leq \frac{1}{N}\leq \epsilon$ Then $|s_n-q|=\frac{1}{n}\leq \frac{1}{N}\leq \epsilon$
EOP QED

View File

@@ -74,7 +74,7 @@ And $\forall \epsilon>0,d(p,p')<2\epsilon\implies d(p,p')=0$. So $p=p'$
Let $\epsilon>0$. Choose $N\in \mathbb{N}$ such that $N>\frac{1}{\epsilon}$. Then if $n\geq N$, $d(p_n,p)<\frac{1}{n}\leq \frac{1}{N}\leq \epsilon$ Let $\epsilon>0$. Choose $N\in \mathbb{N}$ such that $N>\frac{1}{\epsilon}$. Then if $n\geq N$, $d(p_n,p)<\frac{1}{n}\leq \frac{1}{N}\leq \epsilon$
EOP QED
#### Theorem 3.3 #### Theorem 3.3

View File

@@ -14,7 +14,7 @@ $$
Proof: Proof:
Let $\epsilon>0$ be arbitrary, then $\exists N$ such that $\forall n\geq N,|a_n-a|<\epsilon$. Let $\epsilon>0$ be arbitrary, then $\exists N$ such that $\forall n\geq N,|a_n-a|<\epsilon$.
Then if $n\geq N$, $|a_n-a|\leq \sqrt{|a_n-a|^2}\leq\sqrt{|a_n-a|^2+|b_n-b|^2}=|x_n-(a,b)|<\epsilon$. Then if $n\geq N$, $|a_n-a|\leq \sqrt{|a_n-a|^2}\leq\sqrt{|a_n-a|^2+|b_n-b|^2}=|x_n-(a,b)|<\epsilon$.
EOP QED
(b) If $x_n\to (a,b)$, then $b_n\to b$. (b) If $x_n\to (a,b)$, then $b_n\to b$.
This follows from the same argument from (a) This follows from the same argument from (a)
2. Prove the $\implies$ direction. 2. Prove the $\implies$ direction.
@@ -28,7 +28,7 @@ $$
Since $a_n\to a$, $\exists N_1$ such that $\forall n\geq N_1,|a_n-a|<\frac{\epsilon}{\sqrt{2}}$. Since $a_n\to a$, $\exists N_1$ such that $\forall n\geq N_1,|a_n-a|<\frac{\epsilon}{\sqrt{2}}$.
Since $b_n\to b$, $\exists N_2$ such that $\forall n\geq N_2,|b_n-b|<\frac{\epsilon}{\sqrt{2}}$. Since $b_n\to b$, $\exists N_2$ such that $\forall n\geq N_2,|b_n-b|<\frac{\epsilon}{\sqrt{2}}$.
Let $N=\max\{N_1,N_2\}$. Then if $n\geq N$, $|a_n-a|<\epsilon$ and $|b_n-b|<\sqrt{\frac{\epsilon^2}{2}+\frac{\epsilon^2}{2}}=\epsilon$. Let $N=\max\{N_1,N_2\}$. Then if $n\geq N$, $|a_n-a|<\epsilon$ and $|b_n-b|<\sqrt{\frac{\epsilon^2}{2}+\frac{\epsilon^2}{2}}=\epsilon$.
EOP QED
## New Materials ## New Materials
@@ -82,7 +82,7 @@ $$
\left|\frac{1}{s_n}-\frac{1}{s}\right|=\frac{|s-s_n|}{|s||s_n|}<\frac{\frac{\epsilon|s|^2}{2}}{|s|^2}=\epsilon \left|\frac{1}{s_n}-\frac{1}{s}\right|=\frac{|s-s_n|}{|s||s_n|}<\frac{\frac{\epsilon|s|^2}{2}}{|s|^2}=\epsilon
$$ $$
EOP QED
### Subsequences ### Subsequences
@@ -108,7 +108,7 @@ $\implies$:
Thought process: show what if the sequence does not converge to $p$, then there exists a subsequence that does not converge to $p$. Thought process: show what if the sequence does not converge to $p$, then there exists a subsequence that does not converge to $p$.
EOP QED
#### Theorem 3.6 #### Theorem 3.6

View File

@@ -17,7 +17,7 @@ Let $n\geq N$. Since $(s_n)$ is monotonic increasing, $s_n\geq s_N>t-\epsilon$.
So $(s_n)$ converges to $t$. So $(s_n)$ converges to $t$.
EOP QED
## New materials ## New materials
@@ -47,7 +47,7 @@ Step 3: By induction, we can get a sequence $n_1,n_2,\cdots$ such that $\forall
Then $(p_{n_i})$ is a subsequence of $(p_n)$ and $p_{n_i}\to q$. Then $(p_{n_i})$ is a subsequence of $(p_n)$ and $p_{n_i}\to q$.
EOP QED
### Cauchy Sequences ### Cauchy Sequences
@@ -93,7 +93,7 @@ If $m,n\geq N$, then $d(p_m,p_n)\leq d(p_m,p)+d(p,p_n)<\epsilon+\epsilon=2\epsil
*You can also use $\frac{\epsilon}{2}$ instead of $\epsilon$ in the above proof, just for fun.* *You can also use $\frac{\epsilon}{2}$ instead of $\epsilon$ in the above proof, just for fun.*
EOP QED
#### Lemma 3.11 (b) #### Lemma 3.11 (b)
@@ -107,7 +107,7 @@ Let $r=max\{d(p_i,p_j);1\leq i,j\leq N\}+1$.
Then $\forall n\in \mathbb{N}$, $p_n\in B_r(p_N)$. Then $\forall n\in \mathbb{N}$, $p_n\in B_r(p_N)$.
EOP QED
> Note: This proof is nearly identical to the proof of convergent sequences implies bounded. > Note: This proof is nearly identical to the proof of convergent sequences implies bounded.
@@ -148,5 +148,5 @@ By definition of supremum, the claim implies that $\forall \epsilon>0$, $diam(\o
(b) By **Theorem 2.36**, $\bigcap_{n=1}^{\infty}K_n\neq \phi$. Suppose for contradiction that there are at least two distinct points $p,q\in \bigcap_{n=1}^{\infty}K_n$. Then for all $n\in \mathbb{N}$, $x,y\in K_n$ so $diam K_n\geq d(p,q)>0$. Then diameter of $K_n$ does not converge to 0. (b) By **Theorem 2.36**, $\bigcap_{n=1}^{\infty}K_n\neq \phi$. Suppose for contradiction that there are at least two distinct points $p,q\in \bigcap_{n=1}^{\infty}K_n$. Then for all $n\in \mathbb{N}$, $x,y\in K_n$ so $diam K_n\geq d(p,q)>0$. Then diameter of $K_n$ does not converge to 0.
EOP QED

View File

@@ -44,7 +44,7 @@ Note that **Theorem 2.41** only works for $\mathbb{R}^k$.
So by (b), $(p_n)$ converges to some $p\in \overline{B(0,R)}$. So by (b), $(p_n)$ converges to some $p\in \overline{B(0,R)}$.
EOP QED
#### Definition 3.12 #### Definition 3.12
@@ -89,7 +89,7 @@ If $(s_n)$ is monotonic and bounded, then by previous result, $(s_n)$ converges.
If $(s_n)$ is monotonic and converges, then by **Theorem 3.2(c)**, $(s_n)$ is bounded. If $(s_n)$ is monotonic and converges, then by **Theorem 3.2(c)**, $(s_n)$ is bounded.
EOP QED
### Upper and lower limits ### Upper and lower limits

View File

@@ -79,7 +79,7 @@ Case 2: $(s_n)$ is bounded above.
Let $M$ be an upper bound for $(s_n)$. Then $\{n\in\mathbb{N}:s_n\in[M,x]\}$ is infinite, by **Theorem 3.6 (b)** ($\exists$ subsequence $(s_{n_k})$ in $[x,M)$ and $\exists t\in[x,M]$ such that $s_{n_k}\to t$. This implies $t\in E$, so $x\leq t\leq S^*$). Let $M$ be an upper bound for $(s_n)$. Then $\{n\in\mathbb{N}:s_n\in[M,x]\}$ is infinite, by **Theorem 3.6 (b)** ($\exists$ subsequence $(s_{n_k})$ in $[x,M)$ and $\exists t\in[x,M]$ such that $s_{n_k}\to t$. This implies $t\in E$, so $x\leq t\leq S^*$).
EOP QED
#### Theorem 3.19 ("one-sided squeeze theorem") #### Theorem 3.19 ("one-sided squeeze theorem")
@@ -104,7 +104,7 @@ By **Theorem 3.17**, $\{n\in\mathbb{N}:t_n\geq x\}$ is finite $\implies$ $\{n\in
Thus $\limsup_{n\to\infty} s_n\leq \limsup_{n\to\infty} t_n$. Thus $\limsup_{n\to\infty} s_n\leq \limsup_{n\to\infty} t_n$.
EOP QED
> Normal squeeze theorem: If $s_n\leq t_n\leq u_n$ for all $n\in\mathbb{N}$, and $\lim_{n\to\infty} s_n=\lim_{n\to\infty} u_n=L$, then $\lim_{n\to\infty} t_n=L$. > Normal squeeze theorem: If $s_n\leq t_n\leq u_n$ for all $n\in\mathbb{N}$, and $\lim_{n\to\infty} s_n=\lim_{n\to\infty} u_n=L$, then $\lim_{n\to\infty} t_n=L$.
> >

View File

@@ -15,14 +15,14 @@
&\geq\binom{n}{4} &\geq\binom{n}{4}
\end{aligned} \end{aligned}
$$ $$
EOP QED
2. Using part 1, show that $\lim_{n\to\infty}\frac{n^3}{2^n}=0$. 2. Using part 1, show that $\lim_{n\to\infty}\frac{n^3}{2^n}=0$.
Proof: Proof:
$$ $$
\frac{n^3}{2^n}\leq\frac{n^3}{\binom{n}{4}} \frac{n^3}{2^n}\leq\frac{n^3}{\binom{n}{4}}
$$ $$
The value of $\frac{n^3}{\binom{n}{4}}$ is decreasing when $n\geq 4$. The value of $\frac{n^3}{\binom{n}{4}}$ is decreasing when $n\geq 4$.
EOP QED
## New materials ## New materials
@@ -53,7 +53,7 @@ $$
|s_m-s_n|=\left|\sum_{k=n}^{m}a_k\right|<\epsilon. |s_m-s_n|=\left|\sum_{k=n}^{m}a_k\right|<\epsilon.
$$ $$
EOP QED
Special case of this theorem. Special case of this theorem.
@@ -94,7 +94,7 @@ $$
\left|\sum_{k=n}^{m}c_k\right|\leq \sum_{k=n}^{m}c_k<\epsilon. \left|\sum_{k=n}^{m}c_k\right|\leq \sum_{k=n}^{m}c_k<\epsilon.
$$ $$
EOP QED
#### Theorem 3.26 (Geometric series) #### Theorem 3.26 (Geometric series)
@@ -115,7 +115,7 @@ So $s_n=\frac{1-x^{n+1}}{1-x}$.
Since $|x|<1$, $x^{n+1}$ converges to 0. So $\lim_{n\to\infty}s_n=\frac{1}{1-x}$. Since $|x|<1$, $x^{n+1}$ converges to 0. So $\lim_{n\to\infty}s_n=\frac{1}{1-x}$.
EOP QED
#### Lemma 3.28 #### Lemma 3.28
@@ -149,7 +149,7 @@ $$
> Fun fact: $\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$. > Fun fact: $\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$.
EOP QED
#### Theorem 3.27 (Cauchy condensation test) #### Theorem 3.27 (Cauchy condensation test)
@@ -191,4 +191,4 @@ So $(s_n)_{n=1}^{\infty}$ is a bounded above.
By **Theorem 3.14**, $(s_n)_{n=1}^{\infty}$ converges if and only if $(t_k)_{k=0}^{\infty}$ converges. By **Theorem 3.14**, $(s_n)_{n=1}^{\infty}$ converges if and only if $(t_k)_{k=0}^{\infty}$ converges.
EOP QED

View File

@@ -59,7 +59,7 @@ Suppose for contradiction $\alpha$ and $\beta$ are both LUB of $E$, then $\alpha
WLOG $\alpha>\beta$ and $\beta>\alpha$. WLOG $\alpha>\beta$ and $\beta>\alpha$.
EOP QED
We write $\sup E$ to denote the LUB of $E$. We write $\sup E$ to denote the LUB of $E$.

View File

@@ -114,7 +114,7 @@ Therefore, $e\leq \liminf_{n\to\infty} t_n\leq \limsup_{n\to\infty} t_n\leq e$.
So $\lim_{n\to\infty} t_n$ exists and $\lim_{n\to\infty} t_n = e$. So $\lim_{n\to\infty} t_n$ exists and $\lim_{n\to\infty} t_n = e$.
EOP QED
#### Theorem 3.32 #### Theorem 3.32
@@ -156,7 +156,7 @@ $$
Contradiction. Contradiction.
EOP QED
### The root and ratio tests ### The root and ratio tests
@@ -190,7 +190,7 @@ Thus $a_n\not\to 0$, $\sum_{n=0}^{\infty} a_n$ diverges.
(c) $\sum_{n=0}^{\infty} \frac{1}{n}$ and $\sum_{n=0}^{\infty} \frac{1}{n^2}$ both have $\alpha = 1$. but the first diverges and the second converges. (c) $\sum_{n=0}^{\infty} \frac{1}{n}$ and $\sum_{n=0}^{\infty} \frac{1}{n^2}$ both have $\alpha = 1$. but the first diverges and the second converges.
EOP QED
#### Theorem 3.34 (Ratio test) #### Theorem 3.34 (Ratio test)
@@ -232,7 +232,7 @@ i.e. $\forall n\geq N, |a_n| < \beta^{n-N}|a_N|=\beta^n(\beta^{-N}|a_N|)$.
Since $\sum_{n=N}^{\infty} \beta^n$ converges, by comparison test, $\sum_{n=0}^{\infty} a_n$ converges. Since $\sum_{n=N}^{\infty} \beta^n$ converges, by comparison test, $\sum_{n=0}^{\infty} a_n$ converges.
EOP QED
We will skip **Theorem 3.37**. One implication is that if ratio test can be applied, then root test can be applied. We will skip **Theorem 3.37**. One implication is that if ratio test can be applied, then root test can be applied.
@@ -267,4 +267,4 @@ $$
By root test, the series converges absolutely for all $z\in\mathbb{C}$ with $|z| < R$. By root test, the series converges absolutely for all $z\in\mathbb{C}$ with $|z| < R$.
EOP QED

View File

@@ -56,7 +56,7 @@ $$
\end{aligned} \end{aligned}
$$ $$
EOP QED
#### Theorem 3.42 (Dirichlet's test) #### Theorem 3.42 (Dirichlet's test)
@@ -101,7 +101,7 @@ $$
So $\sum a_nb_n$ converges. So $\sum a_nb_n$ converges.
EOP QED
#### Theorem 3.43 (Alternating series test) #### Theorem 3.43 (Alternating series test)
@@ -122,7 +122,7 @@ So $|A_n|\leq 1$ for all $n\in \mathbb{N}$.
By Theorem 3.42, $\sum_{n=1}^\infty a_n b_n$ converges. By Theorem 3.42, $\sum_{n=1}^\infty a_n b_n$ converges.
EOP QED
Example: Example:
@@ -161,7 +161,7 @@ So $|A_n|\leq \frac{2}{|1-z|}$ for all $n\in \mathbb{N}$.
By Dirichlet's test, $\sum_{n=0}^\infty b_nz^n$ By Dirichlet's test, $\sum_{n=0}^\infty b_nz^n$
EOP QED
### Absolute convergence ### Absolute convergence
@@ -183,7 +183,7 @@ $$
\sum_{n=0}^\infty |a_n|\geq \sum_{n=0}^\infty a_n \sum_{n=0}^\infty |a_n|\geq \sum_{n=0}^\infty a_n
$$ $$
EOP QED
Rearrangement of series: Rearrangement of series:
@@ -257,4 +257,4 @@ For every $n\in \mathbb{N}$, there exists a $p$ such that $\{1,2,\cdots,n\}\subs
Then $|s_n-t_n|\leq \sum_{k=N+1}^\infty |a_k|$. Then $|s_n-t_n|\leq \sum_{k=N+1}^\infty |a_k|$.
EOP QED

View File

@@ -77,7 +77,7 @@ This proves that $\lim_{n\to\infty} |s_n - t_n| = 0$.
Since $\lim_{n\to\infty} s_n$ exists, $\lim_{n\to\infty} s_n = \lim_{n\to\infty} t_n$. Since $\lim_{n\to\infty} s_n$ exists, $\lim_{n\to\infty} s_n = \lim_{n\to\infty} t_n$.
EOP QED
#### Theorem 3.54 #### Theorem 3.54
@@ -137,7 +137,7 @@ Then: $(p_n)$ is a sequence in $E\backslash\{p\}$ with $d_X(p_n,p) = \frac{1}{n}
So $\lim_{n\to\infty} f(p_n) \neq q$. So $\lim_{n\to\infty} f(p_n) \neq q$.
EOP QED
With this theorem, we can use the properties of limit of sequences to study limits of functions. With this theorem, we can use the properties of limit of sequences to study limits of functions.

View File

@@ -33,7 +33,7 @@ $\impliedby$: Suppose for every open set $V\subset Y$, $f^{-1}(V)$ is open in $X
Since $p\in f^{-1}(B_\epsilon(f(p)))$ and $f^{-1}(B_\epsilon(f(p)))$ is open, $\exists \delta > 0$ such that $B_\delta(p)\subset f^{-1}(B_\epsilon(f(p)))$. Therefore, $f(B_\delta(p))\subset B_\epsilon(f(p))$. This shows that $f$ is continuous. Since $p\in f^{-1}(B_\epsilon(f(p)))$ and $f^{-1}(B_\epsilon(f(p)))$ is open, $\exists \delta > 0$ such that $B_\delta(p)\subset f^{-1}(B_\epsilon(f(p)))$. Therefore, $f(B_\delta(p))\subset B_\epsilon(f(p))$. This shows that $f$ is continuous.
EOP QED
#### Corollary 4.8 #### Corollary 4.8
@@ -82,7 +82,7 @@ Proof:
Let $p\in \mathbb{R}$ and $\epsilon > 0$. Let $\delta = \epsilon$. Then, $\forall x\in \mathbb{R}$, if $|x-p|<\delta$, then $|f(x)-f(p)| = |x-p| < \delta = \epsilon$. Let $p\in \mathbb{R}$ and $\epsilon > 0$. Let $\delta = \epsilon$. Then, $\forall x\in \mathbb{R}$, if $|x-p|<\delta$, then $|f(x)-f(p)| = |x-p| < \delta = \epsilon$.
EOP QED
Therefore, by **Theorem 4.9**, $f(x) = x^2$ is continuous. $f(x) = x^3$ is continuous... So all polynomials are continuous. Therefore, by **Theorem 4.9**, $f(x) = x^2$ is continuous. $f(x) = x^3$ is continuous... So all polynomials are continuous.
@@ -131,7 +131,7 @@ By Theorem 2.41, $f(X)$ is closed and bounded.
By Theorem 2.28, $\sup f(X)$ and $\inf f(X)$ exist and are in $f(X)$. Let $p_0\in X$ such that $f(p_0) = \sup f(X)$. Let $q_0\in X$ such that $f(q_0) = \inf f(X)$. By Theorem 2.28, $\sup f(X)$ and $\inf f(X)$ exist and are in $f(X)$. Let $p_0\in X$ such that $f(p_0) = \sup f(X)$. Let $q_0\in X$ such that $f(q_0) = \inf f(X)$.
EOP QED
--- ---
@@ -151,7 +151,7 @@ Proof:
See the textbook. See the textbook.
EOP QED
--- ---
@@ -191,7 +191,7 @@ Since $A$ and $B$ are separated, $\overline{A}\cap B = \phi$ and $\overline{B}\c
Therefore, $\overline{G}\cap H = \phi$ and $\overline{H}\cap G = \phi$. Therefore, $\overline{G}\cap H = \phi$ and $\overline{H}\cap G = \phi$.
EOP QED
#### Theorem 4.23 (Intermediate Value Theorem) #### Theorem 4.23 (Intermediate Value Theorem)
@@ -207,4 +207,4 @@ $f(a)$ and $f(b)$ are real numbers in $f([a,b])$, and $c$ is a real number betwe
By **Theorem 2.47**, $c\in f([a,b])$. By **Theorem 2.47**, $c\in f([a,b])$.
EOP QED

View File

@@ -99,7 +99,7 @@ _The $\epsilon$ bound would not hold if we only had pointwise convergence._
$|f_N(x) - f_N(p)| < 3\epsilon$. $|f_N(x) - f_N(p)| < 3\epsilon$.
EOP QED
> Recall: If $(s_n)$ is a sequence in $\mathbb{R}$, then $(s_n)$ converges to $s$ if and only if it is Cauchy. > Recall: If $(s_n)$ is a sequence in $\mathbb{R}$, then $(s_n)$ converges to $s$ if and only if it is Cauchy.
> i.e. $\forall \epsilon > 0$, $\exists N\in \mathbb{N}$, $\forall n, m\geq N$, $|s_n - s_m| < \epsilon$. > i.e. $\forall \epsilon > 0$, $\exists N\in \mathbb{N}$, $\forall n, m\geq N$, $|s_n - s_m| < \epsilon$.
@@ -147,7 +147,7 @@ $$
\end{aligned} \end{aligned}
$$ $$
EOP QED
Example: Example:

View File

@@ -22,10 +22,12 @@ Let $S=\mathbb{Z}$.
## Continue ## Continue
### LUBP ### LUBP (The least upper bound property)
Proof that $LUBP\implies GLBP$. Proof that $LUBP\implies GLBP$.
Proof:
Let $S$ be an ordered set with LUBP. Let $B<S$ be non-empty and bounded below. Let $S$ be an ordered set with LUBP. Let $B<S$ be non-empty and bounded below.
Let $L=y\in S:y$ is a lower bound of $B$. From the picture, we expect $\sup L=\inf B$ First we'll show $\sup L$ exists. Let $L=y\in S:y$ is a lower bound of $B$. From the picture, we expect $\sup L=\inf B$ First we'll show $\sup L$ exists.
@@ -55,6 +57,8 @@ Let's say $\alpha=sup\ L$. We claim that $\alpha=inf\ B$. We need to show $2$ th
Thus $\alpha=inf\ B$ Thus $\alpha=inf\ B$
QED
### Field ### Field
| | addition | multiplication | | | addition | multiplication |

View File

@@ -39,7 +39,7 @@ This implies $(m+1)x>\alpha$
Since $(m+1)x\in \alpha$, this contradicts the fact that $\alpha$ is an upper bound of $A$. Since $(m+1)x\in \alpha$, this contradicts the fact that $\alpha$ is an upper bound of $A$.
EOP QED
### $\mathbb{Q}$ is dense in $\mathbb{R}$ ### $\mathbb{Q}$ is dense in $\mathbb{R}$
@@ -59,7 +59,7 @@ By Archimedean property, $\exist n\in \mathbb{N}$ such that $n(y-x)>1$, and $\ex
So $-m_2<nx<m_1$. Thus $\exist m\in \mathbb{Z}$ such that $m-1\leq nx<m$ (Here we use a property of $\mathbb{Z}$) We have $ny>1+nx\geq 1+(m-1)=m$ So $-m_2<nx<m_1$. Thus $\exist m\in \mathbb{Z}$ such that $m-1\leq nx<m$ (Here we use a property of $\mathbb{Z}$) We have $ny>1+nx\geq 1+(m-1)=m$
EOP QED
### $\sqrt{2}\in \mathbb{R}$, $(\sqrt[n]{x}\in\mathbb{R})$ ### $\sqrt{2}\in \mathbb{R}$, $(\sqrt[n]{x}\in\mathbb{R})$

View File

@@ -94,6 +94,8 @@ So want $k\leq \frac{y^n-x}{ny^{n-1}}$
[For actual proof, see the text.] [For actual proof, see the text.]
QED
### Complex numbers ### Complex numbers
1. $=\{a+bi:a,b\in \mathbb{R}\}$. 1. $=\{a+bi:a,b\in \mathbb{R}\}$.
@@ -149,7 +151,9 @@ $$
(\sum a_j b_j)^2=(\sum a_j^2)(\sum b_j^2) (\sum a_j b_j)^2=(\sum a_j^2)(\sum b_j^2)
$$ $$
Proof for real numbers: Proof:
For real numbers:
Let $A=\sum a_j^2,B=\sum b_j^2, C=\sum a_j b_j$, want to show $C^2\leq AB$ Let $A=\sum a_j^2,B=\sum b_j^2, C=\sum a_j b_j$, want to show $C^2\leq AB$
@@ -165,6 +169,8 @@ let $t=C/B$ to get $0\leq A-2(C/B)C+(C/B)^2B=A-\frac{C^2}{B}$
to generalize this to $\mathbb{C}$, $A=\sum |a_j|^2,B=\sum |b_j|^2,C=\sum |a_j \bar{b_j}|$. to generalize this to $\mathbb{C}$, $A=\sum |a_j|^2,B=\sum |b_j|^2,C=\sum |a_j \bar{b_j}|$.
QED
### Euclidean spaces ### Euclidean spaces
Nothing much to say. lol. Nothing much to say. lol.

View File

@@ -126,7 +126,9 @@ $A$ is countable, $n\in \mathbb{N}$,
$\implies A^n=\{(a_{1},...,a_{n}):a_1\in A, a_n\in A\}$, is countable. $\implies A^n=\{(a_{1},...,a_{n}):a_1\in A, a_n\in A\}$, is countable.
Proof: Induct on $n$, Proof:
Induct on $n$,
Base case $n=1$, Base case $n=1$,
@@ -136,14 +138,20 @@ Induction step: suppose $A^{n-1}$ is countable. Note $A^n=\{(b,a):b\in A^{n-1},a
Since $b$ is fixed, so this is in 1-1 correspondence with $A$, so it's countable by Theorem 2.12. Since $b$ is fixed, so this is in 1-1 correspondence with $A$, so it's countable by Theorem 2.12.
QED
#### Theorem 2.14 #### Theorem 2.14
Let $A$ be the set of all sequences for 0s and 1s. Then $A$ is uncountable. Let $A$ be the set of all sequences for 0s and 1s. Then $A$ is uncountable.
Proof: Let $E\subset A$ be a countable subset. We'll show $A\backslash E\neq \phi$ (i.e.$\exists t\in A$ such that $t\notin E$) Proof:
Let $E\subset A$ be a countable subset. We'll show $A\backslash E\neq \phi$ (i.e.$\exists t\in A$ such that $t\notin E$)
$E$ is countable so we can list it's elements $S_1,S_2,S_3,...$. $E$ is countable so we can list it's elements $S_1,S_2,S_3,...$.
Then we define a new sequence $t$ which differs from $S_1$'s first bit and $S_2$'s second bit,... Then we define a new sequence $t$ which differs from $S_1$'s first bit and $S_2$'s second bit,...
This is called Cantor's diagonal argument. This is called Cantor's diagonal argument.
QED

View File

@@ -80,12 +80,16 @@ Let $(X,d)$ be a metric space, $\forall p\in X,\forall r>0$, $B_r(p)$ is an ope
*every ball is an open set* *every ball is an open set*
Proof: Let $q\in B_r(p)$. Proof:
Let $q\in B_r(p)$.
Let $h=r-d(p,q)$. Let $h=r-d(p,q)$.
Since $q\in B_r(p),h>0$. We claim that $B_h(q)$. Then $d(q,s)<h$, so $d(p,s)\leq d(p,q)+d(q,s)<d(p,q)+h=r$. (using triangle inequality) So $S\in B_r(p)$. Since $q\in B_r(p),h>0$. We claim that $B_h(q)$. Then $d(q,s)<h$, so $d(p,s)\leq d(p,q)+d(q,s)<d(p,q)+h=r$. (using triangle inequality) So $S\in B_r(p)$.
QED
### Closed sets ### Closed sets
1. $E\subset X,p\in X$. We say $p$ is a limit point of $E$ if $\forall r>0, (B_r(p)\cap E)\backslash {p}\neq \phi$. 1. $E\subset X,p\in X$. We say $p$ is a limit point of $E$ if $\forall r>0, (B_r(p)\cap E)\backslash {p}\neq \phi$.
@@ -94,7 +98,9 @@ Since $q\in B_r(p),h>0$. We claim that $B_h(q)$. Then $d(q,s)<h$, so $d(p,s)\leq
2. $E$ is closed if $E'\subset E$ 2. $E$ is closed if $E'\subset E$
Example: $X=\mathbb{R}^2$, $E=[0,1)\times [0,1)$. Example:
$X=\mathbb{R}^2$, $E=[0,1)\times [0,1)$.
$(1,1)$ is a limit point. $(1,1)$ is a limit point.

View File

@@ -41,7 +41,7 @@ let $B_s(p)\cap E)\backslash \{p\}={q_1,...,q_n}$
Then $(B_s(p)\cap E)\backslash \{p\}=\phi$, so $p\notin E$ Then $(B_s(p)\cap E)\backslash \{p\}=\phi$, so $p\notin E$
EOP QED
#### Theorem 2.22 De Morgan's law #### Theorem 2.22 De Morgan's law
@@ -95,7 +95,7 @@ $$
So $(E^c)'\subset E^c$ So $(E^c)'\subset E^c$
EOP QED
#### Theorem 2.24 #### Theorem 2.24
@@ -105,7 +105,7 @@ Proof:
Suppose $\forall \alpha, G_\alpha$ is open. Let $x\in \bigcup _{\alpha} G_\alpha$. Then $\exists \alpha_0$ such that $x\in G_{\alpha_0}$. Since $G_{\alpha_0}$ is open, $\exists r>0$ such that $B_r(x)\subset G_{\alpha_0}$ Then $B_r(x)\subset G_{\alpha_0}\subset \bigcup_{\alpha} G_\alpha$ Suppose $\forall \alpha, G_\alpha$ is open. Let $x\in \bigcup _{\alpha} G_\alpha$. Then $\exists \alpha_0$ such that $x\in G_{\alpha_0}$. Since $G_{\alpha_0}$ is open, $\exists r>0$ such that $B_r(x)\subset G_{\alpha_0}$ Then $B_r(x)\subset G_{\alpha_0}\subset \bigcup_{\alpha} G_\alpha$
EOP QED
##### A finite intersection of open set is open ##### A finite intersection of open set is open
@@ -117,7 +117,7 @@ Let $x\in \bigcap^n_{i=1}G_i$, then $\forall i\in \{1,..,n\}$ and $G_i$ is open,
Let $r=min\{r_1,...,r_n\}$. Then $\forall i\in \{1,...,n\}$. $B_r(x)\subset B_{r_i}(x)\subset G_i$. So $B_r(x)\subset \bigcup_{i=1}^n G_i$ Let $r=min\{r_1,...,r_n\}$. Then $\forall i\in \{1,...,n\}$. $B_r(x)\subset B_{r_i}(x)\subset G_i$. So $B_r(x)\subset \bigcup_{i=1}^n G_i$
EOP QED
The other two can be proved by **Theorem 2.22,2.23** The other two can be proved by **Theorem 2.22,2.23**
@@ -147,4 +147,4 @@ This proves (b)
So $\bar{E}^c$ is open So $\bar{E}^c$ is open
EOP QED

View File

@@ -37,7 +37,7 @@ Let $h>0$. Since $y-h$ is not an upper bound of $E$, $\exists x\in E$ such that
Since $y$ is an upper bound of $E$, $x\leq y$. So $x\in B_n(y)\cap E$, so $B_h(y)\cap E\neq \phi$. Since $y$ is an upper bound of $E$, $x\leq y$. So $x\in B_n(y)\cap E$, so $B_h(y)\cap E\neq \phi$.
EOP QED
#### Remark 2.29 #### Remark 2.29
@@ -75,7 +75,7 @@ To show $G\cap Y\subset E$.
$G\cap Y=\left(\bigcup_{p\in E}V_p\right)\cap Y=\bigcup_{p\in E}(V_p\cap Y)\subset E$ $G\cap Y=\left(\bigcup_{p\in E}V_p\right)\cap Y=\bigcup_{p\in E}(V_p\cap Y)\subset E$
EOP QED
### Compact sets ### Compact sets
@@ -101,4 +101,4 @@ as we can build an infinite open cover $\bigcup_{i\in Z} (i,i+2)$ and it does no
Suppose we consider the sub-collection $\{n_i,n_i+2:i=1,..,k\}$, Then $N+3$ is not in the union, where $N=max\{n_1,...,n_k\}$. Suppose we consider the sub-collection $\{n_i,n_i+2:i=1,..,k\}$, Then $N+3$ is not in the union, where $N=max\{n_1,...,n_k\}$.
EOP QED

View File

@@ -10,7 +10,7 @@ Topics include:
4. Convergence of Series and Sequences 4. Convergence of Series and Sequences
5. Limits and Continuity 5. Limits and Continuity
The course is taught by [Alan Chang](https://math.wustl.edu/people/alan-chang). The course is taught by [Alan Chang](https://math.wustl.edu/pQEDle/alan-chang).
It is easy in my semester perhaps, it is the first course I got 3 perfect scores in exams. (Unfortunately, I did not get the extra credit for the third midterm exam.) It is easy in my semester perhaps, it is the first course I got 3 perfect scores in exams. (Unfortunately, I did not get the extra credit for the third midterm exam.)

View File

@@ -40,7 +40,7 @@ By **Theorem 6.11**, $f^2,g^2\in \mathscr{R}(\alpha)$ on $[a, b]$.
By linearity, $fg=1/4((f+g)^2-(f-g)^2)\in \mathscr{R}(\alpha)$ on $[a, b]$. By linearity, $fg=1/4((f+g)^2-(f-g)^2)\in \mathscr{R}(\alpha)$ on $[a, b]$.
EOP QED
(b) $|f|\in \mathscr{R}(\alpha)$ on $[a, b]$, and $|\int_a^b f d\alpha|\leq \int_a^b |f| d\alpha$. (b) $|f|\in \mathscr{R}(\alpha)$ on $[a, b]$, and $|\int_a^b f d\alpha|\leq \int_a^b |f| d\alpha$.
@@ -54,7 +54,7 @@ Let $c=-1$ or $c=1$. such that $c\int_a^b f d\alpha=| \int_a^b f d\alpha|$.
By linearity, $c\int_a^b f d\alpha=\int_a^b cfd\alpha$. Since $cf\leq |f|$, by monotonicity, $|\int_a^b cfd\alpha|=\int_a^b cfd\alpha\leq \int_a^b |f| d\alpha$. By linearity, $c\int_a^b f d\alpha=\int_a^b cfd\alpha$. Since $cf\leq |f|$, by monotonicity, $|\int_a^b cfd\alpha|=\int_a^b cfd\alpha\leq \int_a^b |f| d\alpha$.
EOP QED
### Indicator Function ### Indicator Function
@@ -104,6 +104,6 @@ Since $f$ is continuous at $s$, when $x\to s$, $U(P,f,\alpha)\to f(s)$ and $L(P,
Therefore, $U(P,f,\alpha)-L(P,f,\alpha)\to 0$, $f\in \mathscr{R}(\alpha)$ on $[a, b]$, and $\int_a^b f d\alpha=f(s)$. Therefore, $U(P,f,\alpha)-L(P,f,\alpha)\to 0$, $f\in \mathscr{R}(\alpha)$ on $[a, b]$, and $\int_a^b f d\alpha=f(s)$.
EOP QED

View File

@@ -79,7 +79,7 @@ $$
\end{aligned} \end{aligned}
$$ $$
EOP QED
If $f\in \mathscr{R}$, and there exists a differentiable function $F:[a,b]\to \mathbb{R}$ such that $F'=f$ on $(a,b)$, then If $f\in \mathscr{R}$, and there exists a differentiable function $F:[a,b]\to \mathbb{R}$ such that $F'=f$ on $(a,b)$, then
@@ -107,4 +107,4 @@ $$
So, $f\in \mathscr{R}$ and $\int_a^b f(x)\ dx=F(b)-F(a)$. So, $f\in \mathscr{R}$ and $\int_a^b f(x)\ dx=F(b)-F(a)$.
EOP QED

View File

@@ -26,7 +26,7 @@ Proof:
To prove Riemann's Integrability Criterion, we need to show that a bounded function $f$ is Riemann integrable if and only if for every $\sigma, \epsilon > 0$, there exists a partition $P$ of $[a, b]$ such that the sum of the lengths of the intervals where the oscillation exceeds $\sigma$ is less than $\epsilon$. To prove Riemann's Integrability Criterion, we need to show that a bounded function $f$ is Riemann integrable if and only if for every $\sigma, \epsilon > 0$, there exists a partition $P$ of $[a, b]$ such that the sum of the lengths of the intervals where the oscillation exceeds $\sigma$ is less than $\epsilon$.
EOP QED
#### Proposition 2.4 #### Proposition 2.4

View File

@@ -36,7 +36,7 @@ So $S\setminus \bigcup_{i=1}^{n} I_i$ contains only finitely many points, say $N
So $c_e(S)\leq \ell(C)\leq c_e(S')+\epsilon$. So $c_e(S)\leq \ell(C)\leq c_e(S')+\epsilon$.
EOP QED
#### Corollary: sef of first species #### Corollary: sef of first species

View File

@@ -32,7 +32,7 @@ So $d\in S$, this contradicts the definition of $\beta$ as the supremum of $S$.
So $\beta \geq b$. So $\beta \geq b$.
EOP QED
### Reviewing sections for Math 4111 ### Reviewing sections for Math 4111
@@ -91,4 +91,4 @@ Setting $r=\sup a_n$ (by the least upper bound property of real numbers), $r\in
This contradicts the assumption that $a_n,b_n$ as the first element in the list. This contradicts the assumption that $a_n,b_n$ as the first element in the list.
EOP QED

View File

@@ -38,7 +38,7 @@ If $b\in T$, then by definition of $T$, $b \notin \psi(b)$, but $\psi(b) = T$, w
If $b \notin T$, then $b \in \psi(b)$, which is also a contradiction since $b\in T$. Therefore, $2^S$ cannot have the same cardinality as $S$. If $b \notin T$, then $b \in \psi(b)$, which is also a contradiction since $b\in T$. Therefore, $2^S$ cannot have the same cardinality as $S$.
EOP QED
### Back to Hankel's Conjecture ### Back to Hankel's Conjecture

View File

@@ -39,7 +39,7 @@ $$
So $h'(x)=\frac{h(t)-h(x)}{t-x}=(f'(x)+u(t))(g'(y)+v(s))$. Since $u(t)\to 0$ and $v(s)\to 0$ as $t\to x$ and $s\to y$, we have $h'(x)=g'(y)f'(x)$. So $h'(x)=\frac{h(t)-h(x)}{t-x}=(f'(x)+u(t))(g'(y)+v(s))$. Since $u(t)\to 0$ and $v(s)\to 0$ as $t\to x$ and $s\to y$, we have $h'(x)=g'(y)f'(x)$.
EOP QED
#### Example 5.6 #### Example 5.6
@@ -135,4 +135,4 @@ If $x<t<x+\delta$, then $f(x)\geq f(t)$ so $\frac{f(t)-f(x)}{t-x}\geq 0$.
So $\lim_{t\to x}\frac{f(t)-f(x)}{t-x}=0$. So $\lim_{t\to x}\frac{f(t)-f(x)}{t-x}=0$.
EOP QED

View File

@@ -39,7 +39,7 @@ Consider three cases:
In all cases, $h$ has a local minimum or maximum in $(a,b)$. In all cases, $h$ has a local minimum or maximum in $(a,b)$.
EOP QED
#### Theorem 5.10 Mean Value Theorem #### Theorem 5.10 Mean Value Theorem

View File

@@ -32,7 +32,7 @@ Hence, $g$ attains its infimum on $[a,b]$ at some $x\in (a,b)$. Then this $x$ is
So $g'(x)=0$ and $f'(x)=\lambda$. So $g'(x)=0$ and $f'(x)=\lambda$.
EOP QED
### L'Hôpital's Rule ### L'Hôpital's Rule
@@ -136,4 +136,4 @@ $$
$\forall x\in (a,c_2)$, $\frac{f(x)}{g(x)}<q$. $\forall x\in (a,c_2)$, $\frac{f(x)}{g(x)}<q$.
EOP QED

View File

@@ -34,7 +34,7 @@ Set $F(x)=-f(x)$. and $q=-A+\epsilon>-A$. Apply main step, $\exists c_2\in (a,b)
We take $c=\min(c_1,c_2)$. Then $\forall x\in (a,c)$, $\frac{f(x)}{g(x)}<q$. We take $c=\min(c_1,c_2)$. Then $\forall x\in (a,c)$, $\frac{f(x)}{g(x)}<q$.
EOP QED
### Higher Order Derivatives ### Higher Order Derivatives
@@ -114,6 +114,6 @@ By Mean Value Theorem, $\exists x_n\in (\alpha,x_{n-1})$ such that $g^{(n)}(x_n)
Since $g^{(n)}(\alpha)=0$ for $k=0,1,2,\cdots,n-1$, we can find $x_n\in (\alpha,x_{n-1})$ such that $g^{(n)}(x_n)=0$. Since $g^{(n)}(\alpha)=0$ for $k=0,1,2,\cdots,n-1$, we can find $x_n\in (\alpha,x_{n-1})$ such that $g^{(n)}(x_n)=0$.
EOP QED
## Chapter 6: Riemann-Stieltjes Integral ## Chapter 6: Riemann-Stieltjes Integral

View File

@@ -95,7 +95,7 @@ $$
Same for $U(P_k,f,\alpha)\geq U(P_{k-1},f,\alpha)$. Same for $U(P_k,f,\alpha)\geq U(P_{k-1},f,\alpha)$.
EOP QED
#### Theorem 6.5 #### Theorem 6.5
@@ -119,4 +119,4 @@ $$
\underline{\int_a^b}f(x)d\alpha\leq \sup_{P_1}L(P_1,f,\alpha)\leq \inf_{P_2}U(P_2,f,\alpha)=\overline{\int_a^b}f(x)d\alpha \underline{\int_a^b}f(x)d\alpha\leq \sup_{P_1}L(P_1,f,\alpha)\leq \inf_{P_2}U(P_2,f,\alpha)=\overline{\int_a^b}f(x)d\alpha
$$ $$
EOP QED

View File

@@ -50,7 +50,7 @@ $$
So $f$ is Riemann integrable with respect to $\alpha$ on $[a, b]$. So $f$ is Riemann integrable with respect to $\alpha$ on $[a, b]$.
EOP QED
#### Theorem 6.8 #### Theorem 6.8
@@ -93,4 +93,4 @@ $$
So, $f$ is Riemann integrable with respect to $\alpha$ on $[a, b]$. So, $f$ is Riemann integrable with respect to $\alpha$ on $[a, b]$.
EOP QED

View File

@@ -40,7 +40,7 @@ $$
Therefore, $U(P,f,\alpha) - L(P,f,\alpha)<U(P,\alpha,f) - L(P,\alpha,f) < \epsilon$, so $f\in \mathscr{R}(\alpha)$ on $[a, b]$. Therefore, $U(P,f,\alpha) - L(P,f,\alpha)<U(P,\alpha,f) - L(P,\alpha,f) < \epsilon$, so $f\in \mathscr{R}(\alpha)$ on $[a, b]$.
EOP QED
#### Theorem 6.10 #### Theorem 6.10
@@ -76,7 +76,7 @@ Since $\epsilon$ is arbitrary, we have $U(P,f,\alpha) - L(P,f,\alpha) < \epsilon
Therefore, $f\in \mathscr{R}(\alpha)$ on $[a, b]$. Therefore, $f\in \mathscr{R}(\alpha)$ on $[a, b]$.
EOP QED
#### Theorem 6.11 #### Theorem 6.11

View File

@@ -53,7 +53,7 @@ $$
Since $\epsilon$ is arbitrary, $h\in \mathscr{R}(\alpha)$ on $[a, b]$. Since $\epsilon$ is arbitrary, $h\in \mathscr{R}(\alpha)$ on $[a, b]$.
EOP QED
### Properties of Integrable Functions ### Properties of Integrable Functions
@@ -108,4 +108,4 @@ So $U(P,h,\alpha)\leq U(P,f,\alpha)+U(P,g,\alpha)\leq \int_a^b f d\alpha + \int_
Since $\epsilon$ is arbitrary, $\int_a^b h d\alpha \leq \int_a^b f d\alpha + \int_a^b g d\alpha$. Since $\epsilon$ is arbitrary, $\int_a^b h d\alpha \leq \int_a^b f d\alpha + \int_a^b g d\alpha$.
EOP QED

View File

@@ -109,8 +109,32 @@ $$
(Define $\text{cis}(\theta)=\cos\theta+i\sin\theta$) (Define $\text{cis}(\theta)=\cos\theta+i\sin\theta$)
#### Theorem 1.6 Parallelogram Equality
The sum of the squares of the lengths of the diagonals of a parallelogram equals the sum of the squares of the lengths of the sides.
Proof:
Let $z_1,z_2$ be two complex numbers representing the two sides of the parallelogram, then the sum of the squares of the lengths of the diagonals of the parallelogram is $|z_1-z_2|^2+|z_1+z_2|^2$, and the sum of the squares of the lengths of the sides is $2|z_1|^2+2|z_2|^2$.
$$
\begin{aligned}
|z_1-z_2|^2+|z_1+z_2|^2 &= (x_1-x_2)^2+(y_1-y_2)^2+(x_1+x_2)^2+(y_1+y_2)^2 \\
&= 2x_1^2+2x_2^2+2y_1^2+2y_2^2 \\
&= 2(|z_1|^2+|z_2|^2)
\end{aligned}
$$
QED
#### Definition 1.9
The argument of a complex number $z$ is defined as the angle $\theta$ between the positive real axis and the ray from the origin through $z$.
### De Moivre's Formula ### De Moivre's Formula
#### Theorem 1.10 De Moivre's Formula
Let $z=r\text{cis}(\theta)$, then Let $z=r\text{cis}(\theta)$, then
$\forall n\in \mathbb{Z}$: $\forall n\in \mathbb{Z}$:

View File

@@ -34,7 +34,7 @@ $$
\left|\sum_{n=1}^{K}a_n-\sum_{n=1}^{L}a_{\sigma(n)}\right|<2\epsilon \left|\sum_{n=1}^{K}a_n-\sum_{n=1}^{L}a_{\sigma(n)}\right|<2\epsilon
$$ $$
EOP QED
## Chapter 4 Complex Integration ## Chapter 4 Complex Integration
@@ -72,7 +72,7 @@ $$
Assume $\phi$ is continuous on $[a,b]$, the equality means $\lambda(t)\phi(t)$ is real and positive everywhere on $[a,b]$, which means $\arg \phi(t)$ is constant. Assume $\phi$ is continuous on $[a,b]$, the equality means $\lambda(t)\phi(t)$ is real and positive everywhere on $[a,b]$, which means $\arg \phi(t)$ is constant.
EOP QED
#### Definition 6.4 Arc Length #### Definition 6.4 Arc Length
@@ -82,12 +82,12 @@ $$
\Gamma=\int_a^b |\gamma'(t)| dt=\int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2} dt \Gamma=\int_a^b |\gamma'(t)| dt=\int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2} dt
$$ $$
N.B. If $\int_{\Gamma} f(\zeta) d\zeta$ depends on orientation of $\Gamma$, but not the parametrization. N.B. If $\int_{\Gamma} f(z) dz$ depends on orientation of $\Gamma$, but not the parametrization.
We define We define
$$ $$
\int_{\Gamma} f(\zeta) d\zeta=\int_{\Gamma} f(\gamma(t))\gamma'(t) dt \int_{\Gamma} f(z) dz=\int_{\Gamma} f(\gamma(t))\gamma'(t) dt
$$ $$
Example: Example:
@@ -95,7 +95,7 @@ Example:
Suppose $\Gamma$ is the circle centered at $z_0$ with radius $R$ Suppose $\Gamma$ is the circle centered at $z_0$ with radius $R$
$$ $$
\int_{\Gamma} \frac{1}{\zeta-z_0} d\zeta \int_{\Gamma} \frac{1}{z-z_0} dz
$$ $$
Parameterize the unit circle: Parameterize the unit circle:
@@ -106,7 +106,7 @@ $$
$$ $$
$$ $$
f(\zeta)=\frac{1}{\zeta-z_0} f(z)=\frac{1}{z-z_0}
$$ $$
$$ $$
@@ -114,7 +114,7 @@ f(\gamma(t))=\frac{1}{(z_0+Re^{it})-z_0}
$$ $$
$$ $$
\int_{\Gamma} f(\zeta) d\zeta=\int_0^{2\pi} f(\gamma(t))\gamma'(t) dt=\int_0^{2\pi} \frac{1}{Re^{-it}}iRe^{it} dt=2\pi i \int_{\Gamma} f(z) dz=\int_0^{2\pi} f(\gamma(t))\gamma'(t) dt=\int_0^{2\pi} \frac{1}{Re^{-it}}iRe^{it} dt=2\pi i
$$ $$
#### Theorem 6.11 (Uniform Convergence) #### Theorem 6.11 (Uniform Convergence)
@@ -142,7 +142,7 @@ $$
\end{aligned} \end{aligned}
$$ $$
EOP QED
#### Theorem 6.6 (Integral of derivative) #### Theorem 6.6 (Integral of derivative)
@@ -157,20 +157,20 @@ $$
\end{aligned} \end{aligned}
$$ $$
EOP QED
Example: Example:
Let $R$ be a rectangle $\{-a,a,ai+b,ai-b\}$, $\Gamma$ is the boundary of $R$ with positive orientation. Let $R$ be a rectangle $\{-a,a,ai+b,ai-b\}$, $\Gamma$ is the boundary of $R$ with positive orientation.
Let $\int_{R} e^{-\zeta^2}d\zeta$. Let $\int_{R} e^{-z^2}dz$.
Is $e^{-\zeta^2}=\frac{d}{d\zeta}f(\zeta)$? Is $e^{-z^2}=\frac{d}{dz}f(z)$?
Yes, since Yes, since
$$ $$
e^{\zeta^2}=1-\frac{\zeta^2}{1!}+\frac{\zeta^4}{2!}-\frac{\zeta^6}{3!}+\cdots=\frac{d}{d\zeta}\left(\frac{\zeta}{1!}-\frac{1}{3}\frac{\zeta^3}{2!}+\frac{1}{5}\frac{\zeta^5}{3!}-\cdots\right) e^{z^2}=1-\frac{z^2}{1!}+\frac{z^4}{2!}-\frac{z^6}{3!}+\cdots=\frac{d}{dz}\left(\frac{z}{1!}-\frac{1}{3}\frac{z^3}{2!}+\frac{1}{5}\frac{z^5}{3!}-\cdots\right)
$$ $$
This is polynomial, therefore holomorphic. This is polynomial, therefore holomorphic.
@@ -178,7 +178,7 @@ This is polynomial, therefore holomorphic.
So So
$$ $$
\int_{R} e^{\zeta^2}d\zeta = 0 \int_{R} e^{z^2}dz = 0
$$ $$
with some limit calculation, we can get with some limit calculation, we can get
@@ -186,5 +186,5 @@ with some limit calculation, we can get
<!--TODO: Fill the parts--> <!--TODO: Fill the parts-->
$$ $$
\int_{R} e^{-\zeta^2}d\zeta = 2\pi i \int_{R} e^{-z^2}dz = 2\pi i
$$ $$

View File

@@ -4,23 +4,23 @@
### Continue on last example ### Continue on last example
Last lecture we have:Let $R$ be a rectangular start from the $-a$ to $a$, $a+ib$ to $-a+ib$, $\int_{R} e^{-\zeta^2}d\zeta=0$, however, the integral consists of four parts: Last lecture we have:Let $R$ be a rectangular start from the $-a$ to $a$, $a+ib$ to $-a+ib$, $\int_{R} e^{-z^2}dz=0$, however, the integral consists of four parts:
Path 1: $-a\to a$ Path 1: $-a\to a$
$\int_{I_1}e^{-\zeta^2}d\zeta=\int_{-a}^{a}e^{-\zeta^2}d\zeta=\int_{-a}^{a}e^{-x^2}dx$ $\int_{I_1}e^{-z^2}dz=\int_{-a}^{a}e^{-z^2}dz=\int_{-a}^{a}e^{-x^2}dx$
Path 2: $a+ib\to -a+ib$ Path 2: $a+ib\to -a+ib$
$\int_{I_2}e^{-\zeta^2}d\zeta=\int_{a+ib}^{-a+ib}e^{-\zeta^2}d\zeta=\int_{0}^{b}e^{-(a+iy)^2}dy$ $\int_{I_2}e^{-z^2}dz=\int_{a+ib}^{-a+ib}e^{-z^2}dz=\int_{0}^{b}e^{-(a+iy)^2}dy$
Path 3: $-a+ib\to -a-ib$ Path 3: $-a+ib\to -a-ib$
$-\int_{I_3}e^{-\zeta^2}d\zeta=-\int_{-a+ib}^{-a-ib}e^{-\zeta^2}d\zeta=-\int_{a}^{-a}e^{-(x-ib)^2}dx$ $-\int_{I_3}e^{-z^2}dz=-\int_{-a+ib}^{-a-ib}e^{-z^2}dz=-\int_{a}^{-a}e^{-(x-ib)^2}dx$
Path 4: $-a-ib\to a-ib$ Path 4: $-a-ib\to a-ib$
$-\int_{I_4}e^{-\zeta^2}d\zeta=-\int_{-a-ib}^{a-ib}e^{-\zeta^2}d\zeta=-\int_{b}^{0}e^{-(-a+iy)^2}dy$ $-\int_{I_4}e^{-z^2}dz=-\int_{-a-ib}^{a-ib}e^{-z^2}dz=-\int_{b}^{0}e^{-(-a+iy)^2}dy$
> #### The reverse of a curve 6.9 > #### The reverse of a curve 6.9
> >
@@ -37,12 +37,12 @@ If we keep $b$ fixed, and let $a\to\infty$, then
> >
> Then > Then
> >
> $$\left|\int_{\gamma}f(\zeta)d\zeta\right|\leq L(\gamma)M$$ > $$\left|\int_{\gamma}f(z)dz\right|\leq L(\gamma)M$$
_Continue on previous example, we have:_ _Continue on previous example, we have:_
$$ $$
\left|\int_{\gamma}f(\zeta)d\zeta\right|\leq L(\gamma)\max_{\zeta\in\gamma}|f(\zeta)|\to 0 \left|\int_{\gamma}f(z)dz\right|\leq L(\gamma)\max_{z\in\gamma}|f(z)|\to 0
$$ $$
Since, Since,
@@ -89,7 +89,7 @@ $$
J=\sqrt{\pi} J=\sqrt{\pi}
$$ $$
EOP QED
## Chapter 7 Cauchy's theorem ## Chapter 7 Cauchy's theorem
@@ -109,7 +109,7 @@ Cauchy's theorem is true if $\gamma$ is a triangle.
Proof: Proof:
We plan to keep shrinking the triangle until $f(\zeta+h)=f(\zeta)+hf'(\zeta)+\epsilon(h)$ where $\epsilon(h)$ is a function of $h$ that goes to $0$ as $h\to 0$. We plan to keep shrinking the triangle until $f(z+h)=f(z)+hf'(z)+\epsilon(h)$ where $\epsilon(h)$ is a function of $h$ that goes to $0$ as $h\to 0$.
Let's start with a triangle $T$ with vertices $z_1,z_2,z_3$. Let's start with a triangle $T$ with vertices $z_1,z_2,z_3$.
@@ -127,21 +127,21 @@ Since $L(T_1)=\frac{1}{2}L(T)$, we iterate after $n$ steps, get a triangle $T_n$
Since $K_n=T_n\cup \text{interior}(T_n)$ is compact, we can find $K_n+1\subset K_n$ and $diam(K_n+1)<\frac{1}{2}diam(K_n)$. $diam(K_n)\to 0$ as $n\to\infty$. (Using completeness theorem) Since $K_n=T_n\cup \text{interior}(T_n)$ is compact, we can find $K_n+1\subset K_n$ and $diam(K_n+1)<\frac{1}{2}diam(K_n)$. $diam(K_n)\to 0$ as $n\to\infty$. (Using completeness theorem)
Since $f$ is holomorphic on $u$, $\lim_{\zeta\to z_0}\frac{f(\zeta)-f(z_0)}{\zeta-z_0}=f'(z_0)$ exists. Since $f$ is holomorphic on $u$, $\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=f'(z_0)$ exists.
So $f(\zeta)=f(z_0)+f'(z_0)(\zeta-z_0)+R(\zeta)$, we have So $f(z)=f(z_0)+f'(z_0)(z-z_0)+R(z)$, we have
$$ $$
\int_{T_n}f(\zeta)d\zeta=\int_{T_n}f(z_0)d\zeta+\int_{T_n}f'(z_0)(\zeta-z_0)d\zeta+\int_{T_n}R(\zeta)d\zeta \int_{T_n}f(z)dz=\int_{T_n}f(z_0)dz+\int_{T_n}f'(z_0)(z-z_0)dz+\int_{T_n}R(z)dz
$$ $$
since $f(z_0)d\zeta+\int_{T_n}f'(z_0)(\zeta-z_0)$ is in form of Cauchy integral formula, we have since $f(z_0)dz+\int_{T_n}f'(z_0)(z-z_0)$ is in form of Cauchy integral formula, we have
$$ $$
\int_{T_n}f(z_0)d\zeta+\int_{T_n}f'(z_0)(\zeta-z_0)d\zeta=0 \int_{T_n}f(z_0)dz+\int_{T_n}f'(z_0)(z-z_0)dz=0
$$ $$
Let $e_n=\max\{\frac{R(\zeta)}{\zeta-z_0}:z_0\in T_n\}$ Let $e_n=\max\{\frac{R(z)}{z-z_0}:z_0\in T_n\}$
Since $diam(K_n)\to 0$ as $n\to\infty$, we have $e_n\to 0$ as $n\to\infty$. Since $diam(K_n)\to 0$ as $n\to\infty$, we have $e_n\to 0$ as $n\to\infty$.
@@ -149,9 +149,9 @@ So
$$ $$
\begin{aligned} \begin{aligned}
|I|&\leq 4^n\left|\int_{T_n}f(\zeta)d\zeta\right|\\ |I|&\leq 4^n\left|\int_{T_n}f(z)dz\right|\\
&\leq 4^n\left|\int_{T_n}R_n(\zeta)d\zeta\right|\\ &\leq 4^n\left|\int_{T_n}R_n(z)dz\right|\\
&\leq 4^n\cdot L(T_n)\cdot \max_{\zeta\in T_n}|R_n(\zeta)|\\ &\leq 4^n\cdot L(T_n)\cdot \max_{z\in T_n}|R_n(z)|\\
&\leq 4^n\cdot \frac{L(T_0)}{2^n}\cdot e_n L(T_n)\\ &\leq 4^n\cdot \frac{L(T_0)}{2^n}\cdot e_n L(T_n)\\
&\leq 4^n\cdot \frac{L(T_0)}{2^n}\cdot e_n\cdot \frac{L(T_0)}{2^n}\\ &\leq 4^n\cdot \frac{L(T_0)}{2^n}\cdot e_n\cdot \frac{L(T_0)}{2^n}\\
&\leq e_n\cdot L(T_0)^2 &\leq e_n\cdot L(T_0)^2
@@ -163,7 +163,7 @@ Since $e_n\to 0$ as $n\to\infty$, we have $I\to 0$ as $n\to\infty$.
So So
$$ $$
\int_{T_n}f(\zeta)d\zeta\to 0 \int_{T_n}f(z)dz\to 0
$$ $$
EOP QED

View File

@@ -7,114 +7,114 @@
Let $T$ be a triangle in $\mathbb{C}$ and $f$ be holomorphic on $T$. Then Let $T$ be a triangle in $\mathbb{C}$ and $f$ be holomorphic on $T$. Then
$$ $$
\int_T f(\zeta) d\zeta = 0 \int_T f(z) dz = 0
$$ $$
### Cauchy's Theorem for Convex Sets ### Cauchy's Theorem for Convex Sets
Let's start with a simple case: $f(\zeta)=1$. Let's start with a simple case: $f(z)=1$.
For any closed curve $\gamma$ in $U$, we have For any closed curve $\gamma$ in $U$, we have
$$ $$
\int_\gamma f(\zeta) d\zeta = \int_a^b f(\gamma(t)) \gamma'(t) dt \approx \sum_{i=1}^n f(\gamma(t_i)) \gamma'(t_i) \Delta t_i \int_\gamma f(z) dz = \int_a^b f(\gamma(t)) \gamma'(t) dt \approx \sum_{i=1}^n f(\gamma(t_i)) \gamma'(t_i) \Delta t_i
$$ $$
#### Definition of a convex set #### Definition of a convex set
A set $U$ is convex if for any two points $\zeta_1, \zeta_2 \in U$, the line segment $[\zeta_1, \zeta_2] \subset U$. A set $U$ is convex if for any two points $z_1, z_2 \in U$, the line segment $[z_1, z_2] \subset U$.
Let $O(U)$ be the set of all holomorphic functions on $U$. Let $O(U)$ be the set of all holomorphic functions on $U$.
#### Definition of primitive #### Definition of primitive
Say $f$ has a primitive on $U$. If there exists a holomorphic function $g$ on $U$ such that $g'(\zeta)=f(\zeta)$ for all $\zeta \in U$, then $g$ is called a primitive of $f$ on $U$. Say $f$ has a primitive on $U$. If there exists a holomorphic function $g$ on $U$ such that $g'(z)=f(z)$ for all $z \in U$, then $g$ is called a primitive of $f$ on $U$.
#### Cauchy's Theorem for a Convex region #### Cauchy's Theorem for a Convex region
Cauchy's Theorem holds if $f$ has a primitive on a convex region $U$. Cauchy's Theorem holds if $f$ has a primitive on a convex region $U$.
$$ $$
\int_\gamma f(\zeta) d\zeta = \int_\gamma \left[\frac{d}{d\zeta}g(\zeta)\right] d\zeta = g(\zeta_1)-g(\zeta_2) \int_\gamma f(z) dz = \int_\gamma \left[\frac{d}{dz}g(z)\right] dz = g(z_1)-g(z_2)
$$ $$
Since the curve is closed, $\zeta_1=\zeta_2$, so $\int_\gamma f(\zeta) d\zeta = 0$. Since the curve is closed, $z_1=z_2$, so $\int_\gamma f(z) dz = 0$.
Proof: Proof:
It is sufficient to prove that if $U$ is convex, $f$ is holomorphic on $U$, then $f=g'$ for some $g$ holomorphic on $U$. It is sufficient to prove that if $U$ is convex, $f$ is holomorphic on $U$, then $f=g'$ for some $g$ holomorphic on $U$.
We pick a point $z_0\in U$ and define $g(\zeta)=\int_{[\zeta_0,\zeta]}f(\xi)d\xi$. We pick a point $z_0\in U$ and define $g(z)=\int_{[z_0,z]}f(\xi)d\xi$.
We claim $g\in O(U)$ and $g'=f$. We claim $g\in O(U)$ and $g'=f$.
Let $\zeta_1$ close to $\zeta$, since $f$ is holomorphic on $U$, using the Goursat's theorem, we can find a triangle $T$ with $\xi\in T$ and $\zeta\in T$ and $T\subset U$. Let $z_1$ close to $z$, since $f$ is holomorphic on $U$, using the Goursat's theorem, we can find a triangle $T$ with $\xi\in T$ and $z\in T$ and $T\subset U$.
$$ $$
\begin{aligned} \begin{aligned}
0&=\int_{\zeta_0}^{\zeta}f(\xi)d\xi+\int_{\zeta}^{\zeta_1}f(\xi)d\xi\\ 0&=\int_{z_0}^{z}f(\xi)d\xi+\int_{z}^{z_1}f(\xi)d\xi\\
&=g(\zeta)-g(\zeta_1)+\int_{\zeta}^{\zeta_1}f(\xi)d\xi+\int_{\zeta_1}^{\zeta_0}f(\xi)d\xi\\ &=g(z)-g(z_1)+\int_{z}^{z_1}f(\xi)d\xi+\int_{z_1}^{z_0}f(\xi)d\xi\\
\frac{g(\zeta)-g(\zeta_1)}{\zeta-\zeta_1}&=-\frac{1}{\zeta-\zeta_1}\left(\int_{\zeta}^{\zeta_1}f(\xi)d\xi\right)\\ \frac{g(z)-g(z_1)}{z-z_1}&=-\frac{1}{z-z_1}\left(\int_{z}^{z_1}f(\xi)d\xi\right)\\
\frac{g(\zeta_1)-g(\zeta_0)}{\zeta_1-\zeta_0}-f(\zeta_1)&=-\frac{1}{\zeta_1-\zeta_0}\left(\int_{\zeta}^{\zeta_1}f(\xi)d\xi\right)-f(\zeta_1)\\ \frac{g(z_1)-g(z_0)}{z_1-z_0}-f(z_1)&=-\frac{1}{z_1-z_0}\left(\int_{z}^{z_1}f(\xi)d\xi\right)-f(z_1)\\
&=-\frac{1}{\zeta_1-\zeta_0}\left(\int_{\zeta}^{\zeta_1}f(\xi)-f(\zeta_1)d\xi\right)\\ &=-\frac{1}{z_1-z_0}\left(\int_{z}^{z_1}f(\xi)-f(z_1)d\xi\right)\\
&=I &=I
\end{aligned} \end{aligned}
$$ $$
Use the fact that $f$ is holomorphic on $U$, then $f$ is continuous on $U$, so $\lim_{\zeta\to\zeta_1}f(\zeta)=f(\zeta_1)$. Use the fact that $f$ is holomorphic on $U$, then $f$ is continuous on $U$, so $\lim_{z\toz_1}f(z)=f(z_1)$.
There exists a $\delta>0$ such that $|\zeta-\zeta_1|<\delta$ implies $|f(\zeta)-f(\zeta_1)|<\epsilon$. There exists a $\delta>0$ such that $|z-z_1|<\delta$ implies $|f(z)-f(z_1)|<\epsilon$.
So So
$$ $$
|I|\leq\frac{1}{\zeta_1-\zeta_0}\int_{\zeta}^{\zeta_1}|f(\xi)-f(\zeta_1)|d\xi<\frac{\epsilon}{\zeta_1-\zeta_0}\int_{\zeta}^{\zeta_1}d\xi=\epsilon |I|\leq\frac{1}{z_1-z_0}\int_{z}^{z_1}|f(\xi)-f(z_1)|d\xi<\frac{\epsilon}{z_1-z_0}\int_{z}^{z_1}d\xi=\epsilon
$$ $$
So $I\to 0$ as $\zeta_1\to\zeta$. So $I\to 0$ as $z_1\toz$.
Therefore, $g'(\zeta_1)=f(\zeta_1)$ for all $\zeta_1\in U$. Therefore, $g'(z_1)=f(z_1)$ for all $z_1\in U$.
EOP QED
### Cauchy's Theorem for a disk ### Cauchy's Theorem for a disk
Let $U$ be the open set, $f\in O(U)$. Let $C$ be a circle inside $U$ and $\zeta$ be a point inside $C$. Let $U$ be the open set, $f\in O(U)$. Let $C$ be a circle inside $U$ and $z$ be a point inside $C$.
Then Then
$$ $$
f(\zeta)=\frac{1}{2\pi i}\int_C\frac{f(\xi)d\xi}{\xi-\zeta} d\xi f(z)=\frac{1}{2\pi i}\int_C\frac{f(\xi)d\xi}{\xi-z} d\xi
$$ $$
Proof: Proof:
Let $C_\epsilon$ be a circle with center $\zeta$ and radius $\epsilon$ inside $C$. Let $C_\epsilon$ be a circle with center $z$ and radius $\epsilon$ inside $C$.
Claim: Claim:
$$ $$
\int_{C_\epsilon}\frac{f(\xi)d\xi}{\xi-\zeta}=\int_{C}\frac{f(\xi)d\xi}{\xi-\zeta} \int_{C_\epsilon}\frac{f(\xi)d\xi}{\xi-z}=\int_{C}\frac{f(\xi)d\xi}{\xi-z}
$$ $$
We divide the integral into four parts: We divide the integral into four parts:
![Integral on a disk](https://notenextra.trance-0.com/Math416/Cauchy_disk.png) ![Integral on a disk](https://notenextra.trance-0.com/Math416/Cauchy_disk.png)
Notice that $\frac{f(\xi)}{\xi-\zeta}$ is holomorphic whenever $f(\xi)\in U$ and $\xi\in \mathbb{C}\setminus\{\zeta\}$. Notice that $\frac{f(\xi)}{\xi-z}$ is holomorphic whenever $f(\xi)\in U$ and $\xi\in \mathbb{C}\setminus\{z\}$.
So we can apply Cauchy's theorem to the integral on the inside square. So we can apply Cauchy's theorem to the integral on the inside square.
$$ $$
\int_{C_\epsilon}\frac{f(\xi)d\xi}{\xi-\zeta}=0 \int_{C_\epsilon}\frac{f(\xi)d\xi}{\xi-z}=0
$$ $$
Since $\frac{1}{2\pi i}\int_{C_\epsilon}\frac{1}{\xi-\zeta}d\xi=1$, $\sigma=\epsilon e^{it}+\zeta_0$ and $\sigma'=\epsilon e^{it}$, we have Since $\frac{1}{2\pi i}\int_{C_\epsilon}\frac{1}{\xi-z}d\xi=1$, $\sigma=\epsilon e^{it}+z_0$ and $\sigma'=\epsilon e^{it}$, we have
/* TRACK LOST*/ /* TRACK LOST*/
$$ $$
\int_{C_\epsilon}\frac{f(\xi)d\xi}{\xi-\zeta}=\int_0^{2\pi}\frac{f(\sigma)d\sigma}{\sigma-\zeta}=2\pi i f(\zeta) \int_{C_\epsilon}\frac{f(\xi)d\xi}{\xi-z}=\int_0^{2\pi}\frac{f(\sigma)d\sigma}{\sigma-z}=2\pi i f(z)
$$ $$
EOP QED

View File

@@ -0,0 +1,182 @@
# Math416 Lecture 13
## Review on Cauchy's Theorem
Cauchy's Theorem states that if a function is holomorphic (complex differentiable) on a simply connected domain, then the integral of that function over any closed contour within that domain is zero.
Last lecture we proved the case for convex regions.
### Cauchy's Formula for a Circle
Let $C$ be a counterclockwise oriented circle, and let $f$ be a holomorphic
function defined in an open set containing $C$ and its interior. Then,
$$
f(z_0)=\frac{1}{2\pi i}\int_C\frac{f(z)}{z-z_0}dz
$$
for all points $z$ in the interior of $C$.
## New materials
### Mean value property
#### Theorem 7.6: Mean value property
Special case: Suppose $f$ is holomorphic on some $\mathbb{D}(z_0,R)\subset \mathbb{C}$, by cauchy's formula,
$$
f(z_0)=\frac{1}{2\pi i}\int_{C_r}\frac{f(z)}{z-z_0}dz
$$
Parameterizing $C_r$, we get $\gamma(t)=z_0+re^{it}$, $0\leq t\leq 2\pi$
$$
\int f(z)dz=\int f(\gamma) \gamma'(t) d t
$$
So,
$$
f(z_0)=\frac{1}{2\pi i}\int_0^{2\pi}\frac{f(z_0+re^{it})}{re^{it}} ire^{it} dt=\frac{1}{2\pi}\int_{0}^{2\pi} f(z_0+re^{it}) dt
$$
This concludes the mean value property for the holomorphic function
If $f$ is holomorphic, $f(z_0)$ is the mean value of $f$ on any circle centered at $z_0$
#### Area representation of mean value property
Area of $f$ on $\mathbb{D}(z_0,r)$
$$
\frac{1}{\pi r^2}\int_{0}^{2\pi}\int_0^r f(z_0+re^{it})
$$
/*Track lost*/
### Cauchy Integral
#### Definition 7.7
Let $\gamma:[a,b]\to \mathbb{C}$ be piecewise $\mathbb{C}^1$, let $\phi$ be condition on $\gamma$. Then the Cauchy interval of $\phi$ along $\gamma$ is
$$
F(z)=\int_{\gamma}\frac{\phi(\zeta)}{\zeta-z}d \zeta
$$
#### Theorem
Suppose $F(z)=\int_{\gamma}\frac{\phi(z)}{\zeta-z}d z$. Then $F$ has a local power series representation at all points $z_0$ not in $\gamma$.
Proof:
Let $R=B(z_0,\gamma)>0$, let $z\in \mathbb{D}(z_0,R)$
So
$$
\frac{1}{\zeta-z}=\frac{1}{(\zeta-z_0)-(z-z_0)}=\frac{1}{1-z_0}\frac{1}{1-\frac{z-z_0}{\zeta-z_0}}
$$
Since $|z-z_0|<R$ and $|\zeta-z_0|>R$, $|\frac{z-z_0}{\zeta-z_0}|<1$.
Converting it to geometric series
$$
\frac{1}{1-z_0}\frac{1}{1-\frac{z-z_0}{\zeta-z_0}}=\sum_{n=0}^\infty \left(\frac{z-z_0}{\zeta-z_0}\right)^n
$$
So,
$$
\begin{aligned}
F(z)&=\int_\gamma \frac{\phi(\zeta)}{\zeta - z} d\zeta\\
&=\int_\gamma \frac{\phi(\zeta)}{z-z_0} \sum_{n=0}^\infty \left(\frac{z-z_0}{\zeta-z_0}\right)^n dz\\
&=\sum_{n=0}^\infty (z-z_0)^n \int_\gamma \frac{\phi(\zeta)}{(\zeta-z_0)^{n+1}}
\end{aligned}
$$
Which gives us an power series representation if we set $a_n=\int_\gamma \frac{\phi(\zeta)}{(\zeta-z_0)^{n+1}}$
QED
#### Corollary 7.7
Suppose $F(z)=\int_\gamma \frac{\phi(\zeta)}{\zeta-z_0} dz$,
Then,
$$
f^{(n)}(z)=n!\int_\gamma \frac{\phi(z)}{(\zeta-z_0)^{n+1}} d\zeta
$$
where $z\in \mathbb{C}\setminus \gamma$.
Combine with Cauchy integral formula:
If $f$ is in $O(\Omega)$, then $\forall z\in \mathbb{D}(z_0,r)$.
$$
f(z)=\frac{1}{2\pi i}\int_{C_r}\frac{f(\zeta)}{\zeta-z} d\zeta
$$
We have proved that If $f\in O(\Omega)$, then $f$ is locally given by a convergent power series
power series has radius of convergence at $z_0$ that is $\geq$ dist($z_0$,boundary $\Omega$)
### Liouville's Theorem
#### Definition 7.11
A function that is holomorphic in all of $\mathbb{C}$ is called an entire function.
#### Theorem 7.11 Liouville's Theorem
Any bounded entire function is constant.
> Basic Estimate of integral
>
> $$\left|\int_\gamma f(z) dz\right|\leq L(\gamma) \max\left|f(z)\right|$$
Since,
$$
f'(z)=\frac{1}{2\pi i} \int_{C_r} \frac{f(z)}{(\zeta-z)^2} dz
$$
So the modulus of the integral is bounded by
$$
\frac{1}{2\pi} |M|\cdot \frac{1}{R^2}=2\pi R\cdot M \frac{1}{R^2}=\frac{M}{R}
$$
### Fundamental Theorem of Algebra
#### Theorem 7.12 Fundamental Theorem of ALgebra
Every nonconstant polynomial with complex coefficients can be factored over
$\mathbb{C}$ into linear factors.
#### Corollary
For every polynomial with complex coefficients.
$$
p(z)=c\prod_{j=i}^n(z-z_0)^{t_j}
$$
where the degree of polynomial is $\sum_{j=0}^n t_j$
Proof:
Let $p(z)=a_0+a_1z+\cdots+a_nz^n$, where $a_n\neq 0$ and $n\geq 1$.
So
$$
|p(z)|=|a_nz_n|\left[\left|1+\frac{a_{n-1}}{a_nz}+\cdots+\frac{a_0}{a_nz^n}\right|\right]
$$
If $|z|\geq R$, $\left|1+\frac{a_{n-1}}{a_nz}+\cdots+\frac{a_0}{a_nz^n}\right|<\frac{1}{2}$

View File

@@ -24,6 +24,7 @@ $$
\forall n\in \mathbb{Z}, z^n=r^n\text{cis}(n\theta) \forall n\in \mathbb{Z}, z^n=r^n\text{cis}(n\theta)
$$ $$
## New Fancy stuff ## New Fancy stuff
Claim: Claim:
@@ -54,7 +55,7 @@ When $k=1$, we get $\text{cis}\left(\frac{2\pi}{3}\right)=-\frac{1}{2}+i\frac{\s
When $k=2$, we get $\text{cis}\left(\frac{4\pi}{3}\right)=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$ When $k=2$, we get $\text{cis}\left(\frac{4\pi}{3}\right)=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$
#### Strange example Strange example
Let $p(x)=a_3x^3+a_2x^2+a_1x+a_0$ be a polynomial with real coefficients. Let $p(x)=a_3x^3+a_2x^2+a_1x+a_0$ be a polynomial with real coefficients.
@@ -197,18 +198,18 @@ So all the point on the north pole is mapped to outside of the unit circle in $\
all the point on the south pole is mapped to inside of the unit circle in $\mathbb{R}^2$. all the point on the south pole is mapped to inside of the unit circle in $\mathbb{R}^2$.
The line through $(0,0,1)$ and $(\xi,\eta,\zeta)$ intersects the unit sphere at $(x,y,0)$ The line through $(0,0,1)$ and $(\xi,\eta,z)$ intersects the unit sphere at $(x,y,0)$
Line $(tx,ty,1-t)$ intersects $\zeta^2$ at $t^2x^2+t^2y^2+(1-t)^2=1$ Line $(tx,ty,1-t)$ intersects $z^2$ at $t^2x^2+t^2y^2+(1-t)^2=1$
So $t=\frac{2}{1+x^2+y^2}$ So $t=\frac{2}{1+x^2+y^2}$
$$ $$
\zeta=x+iy\mapsto \frac{1}{1+|\zeta|^2}(2Re(\zeta),2Im(\zeta),|\zeta|^2-1) z=x+iy\mapsto \frac{1}{1+|z|^2}(2Re(z),2Im(z),|z|^2-1)
$$ $$
$$ $$
(\xi,\eta,\zeta)\mapsto \frac{\xi+i\eta}{1-\zeta} (\xi,\eta,z)\mapsto \frac{\xi+i\eta}{1-z}
$$ $$
This is a homeomorphism. $\mathbb{C}\setminus\{\infty\}\simeq S^2$ This is a homeomorphism. $\mathbb{C}\setminus\{\infty\}\simeq S^2$
@@ -220,7 +221,7 @@ Suppose $\Omega$ is an open subset of $\mathbb{C}$.
A function $f:\Omega\to \mathbb{C}$'s derivative is defined as A function $f:\Omega\to \mathbb{C}$'s derivative is defined as
$$ $$
f'(\zeta_0)=\lim_{\zeta\to \zeta_0}\frac{f(\zeta)-f(\zeta_0)}{\zeta-\zeta_0} f'(z_0)=\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}
$$ $$
$f=u+iv$, $u,v:\Omega\to \mathbb{R}$ $f=u+iv$, $u,v:\Omega\to \mathbb{R}$
@@ -232,11 +233,11 @@ How are $f'$ and derivatives of $u$ and $v$ related?
Chain rule applies Chain rule applies
$$ $$
\frac{d}{d\zeta}(f(g(\zeta)))=f'(g(\zeta))g'(\zeta) \frac{d}{dz}(f(g(z)))=f'(g(z))g'(z)
$$ $$
Polynomials Polynomials
$$ $$
\frac{d}{d\zeta}\zeta^n=n\zeta^{n-1} \frac{d}{dz}z^n=nz^{n-1}
$$ $$

View File

@@ -4,14 +4,14 @@
### Differentiability ### Differentiability
#### Definition of differentiability in complex variables #### Definition 2.1 of differentiability in complex variables
**Suppose $G$ is an open subset of $\mathbb{C}$**. **Suppose $G$ is an open subset of $\mathbb{C}$**. (very important, $f'(z_0)$ cannot be define unless $z_0$ belongs to an open set in which $f$ is defined.)
A function $f:G\to \mathbb{C}$ is differentiable at $\zeta_0\in G$ if A function $f:G\to \mathbb{C}$ is differentiable at $z_0\in G$ if
$$ $$
f'(\zeta_0)=\lim_{\zeta\to \zeta_0}\frac{f(\zeta)-f(\zeta_0)}{\zeta-\zeta_0} f'(z_0)=\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}
$$ $$
exists. exists.
@@ -20,7 +20,7 @@ Or equivalently,
We can also express the $f$ as $f=u+iv$, where $u,v:G\to \mathbb{R}$ are real-valued functions. We can also express the $f$ as $f=u+iv$, where $u,v:G\to \mathbb{R}$ are real-valued functions.
Recall that $u:G\to \mathbb{R}$ is differentiable at $\zeta_0\in G$ if and only if there exists a complex number $(x,y)\in \mathbb{C}$ such that a function Recall that $u:G\to \mathbb{R}$ is differentiable at $z_0\in G$ if and only if there exists a complex number $(x,y)\in \mathbb{C}$ such that a function
$$ $$
R(x,y)=u(x,y)-\left(u(x_0,y_0)+\frac{\partial u}{\partial x}(x_0,y_0)(x-x_0)+\frac{\partial u}{\partial y}(x_0,y_0)(y-y_0)\right) R(x,y)=u(x,y)-\left(u(x_0,y_0)+\frac{\partial u}{\partial x}(x_0,y_0)(x-x_0)+\frac{\partial u}{\partial y}(x_0,y_0)(y-y_0)\right)
@@ -65,9 +65,9 @@ Then the differentiability of $v$ at $(x_0,y_0)$ guarantees that
$$ $$
\lim_{(x,y)\to (x_0,y_0)}\frac{|S(x,y)|}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0. \lim_{(x,y)\to (x_0,y_0)}\frac{|S(x,y)|}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0.
$$ $$
Moreover, considering the definition of the complex derivative of $f=u+iv$, if we approach $\zeta_0=x_0+iy_0$ along different directions we obtain Moreover, considering the definition of the complex derivative of $f=u+iv$, if we approach $z_0=x_0+iy_0$ along different directions we obtain
$$ $$
f'(\zeta_0)=\frac{\partial u}{\partial x}(x_0,y_0)+i\frac{\partial v}{\partial x}(x_0,y_0) f'(z_0)=\frac{\partial u}{\partial x}(x_0,y_0)+i\frac{\partial v}{\partial x}(x_0,y_0)
=\frac{\partial v}{\partial y}(x_0,y_0)-i\frac{\partial u}{\partial y}(x_0,y_0). =\frac{\partial v}{\partial y}(x_0,y_0)-i\frac{\partial u}{\partial y}(x_0,y_0).
$$ $$
Equating the real and imaginary parts of these two expressions forces Equating the real and imaginary parts of these two expressions forces
@@ -77,7 +77,7 @@ $$
#### Theorem 2.6 (The Cauchy-Riemann equations): #### Theorem 2.6 (The Cauchy-Riemann equations):
If $f=u+iv$ is complex differentiable at $\zeta_0\in G$, then $u$ and $v$ are real differentiable at $(x_0,y_0)$ and If $f=u+iv$ is complex differentiable at $z_0\in G$, then $u$ and $v$ are real differentiable at $(x_0,y_0)$ and
$$ $$
\frac{\partial u}{\partial x}(x_0,y_0)=\frac{\partial v}{\partial y}(x_0,y_0),\quad \frac{\partial u}{\partial y}(x_0,y_0)=-\frac{\partial v}{\partial x}(x_0,y_0). \frac{\partial u}{\partial x}(x_0,y_0)=\frac{\partial v}{\partial y}(x_0,y_0),\quad \frac{\partial u}{\partial y}(x_0,y_0)=-\frac{\partial v}{\partial x}(x_0,y_0).
@@ -85,35 +85,37 @@ $$
> Some missing details: > Some missing details:
> >
> The Cauchy-Riemann equations are necessary and sufficient for the differentiability of $f$ at $\zeta_0$. > The Cauchy-Riemann equations are necessary and sufficient for the differentiability of $f$ at $z_0$.
> >
> This states that a function $f$ is **complex differentiable** at $\zeta_0$ if and only if $u$ and $v$ are real differentiable at $(x_0,y_0)$ and the Cauchy-Riemann equations hold at $(x_0,y_0)$. That is $f'(\zeta_0)=\frac{\partial u}{\partial x}(x_0,y_0)+i\frac{\partial v}{\partial x}(x_0,y_0)=\frac{\partial v}{\partial y}(x_0,y_0)-i\frac{\partial u}{\partial y}(x_0,y_0)$. > This states that a function $f$ is **complex differentiable** at $z_0$ if and only if $u$ and $v$ are real differentiable at $(x_0,y_0)$ and the Cauchy-Riemann equations hold at $(x_0,y_0)$. That is $f'(z_0)=\frac{\partial u}{\partial x}(x_0,y_0)+i\frac{\partial v}{\partial x}(x_0,y_0)=\frac{\partial v}{\partial y}(x_0,y_0)-i\frac{\partial u}{\partial y}(x_0,y_0)$.
And $u$ and $v$ have continuous partial derivatives at $(x_0,y_0)$. And $u$ and $v$ have continuous partial derivatives at $(x_0,y_0)$.
And let $c=\frac{\partial u}{\partial x}(x_0,y_0)$ and $d=\frac{\partial v}{\partial x}(x_0,y_0)$. And let $c=\frac{\partial u}{\partial x}(x_0,y_0)$ and $d=\frac{\partial v}{\partial x}(x_0,y_0)$.
**Then $f'(\zeta_0)=c+id$, is holomorphic at $\zeta_0$.** **Then $f'(z_0)=c+id$, is holomorphic at $z_0$.**
### Holomorphic Functions ### Holomorphic Functions
#### Definition 2.8 (Holomorphic functions) #### Definition 2.8 (Holomorphic functions)
A function $f:G\to \mathbb{C}$ is holomorphic (or analytic) at $\zeta_0\in G$ if it is complex differentiable at $\zeta_0$. A function $f:G\to \mathbb{C}$ is holomorphic (or analytic) at $z_0\in G$ if it is complex differentiable at $z_0$.
> Note that the true definition of analytic function is that can be written as a convergent power series in a neighborhood of each point in its domain. We will prove that these two definitions are equivalent to each other in later sections.
Example: Example:
Suppose $f:G\to \mathbb{C}$ where $f=u+iv$ and $\frac{\partial f}{\partial x}=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}$, $\frac{\partial f}{\partial y}=\frac{\partial u}{\partial y}+i\frac{\partial v}{\partial y}$. Suppose $f:G\to \mathbb{C}$ where $f=u+iv$ and $\frac{\partial f}{\partial x}=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}$, $\frac{\partial f}{\partial y}=\frac{\partial u}{\partial y}+i\frac{\partial v}{\partial y}$.
Define $\frac{\partial}{\partial \zeta}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)$ and $\frac{\partial}{\partial \bar{\zeta}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)$. Define $\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)$ and $\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)$.
Suppose $f$ is holomorphic at $\bar{\zeta}_0\in G$ (Cauchy-Riemann equations hold at $\bar{\zeta}_0$). Suppose $f$ is holomorphic at $\bar{z}_0\in G$ (Cauchy-Riemann equations hold at $\bar{z}_0$).
Then $\frac{\partial f}{\partial \bar{\zeta}}(\bar{\zeta}_0)=0$. Then $\frac{\partial f}{\partial \bar{z}}(\bar{z}_0)=0$.
Note that $\forall m\in \mathbb{Z}$, $\zeta^m$ is holomorphic on $\mathbb{C}$. Note that $\forall m\in \mathbb{Z}$, $z^m$ is holomorphic on $\mathbb{C}$.
i.e. $\forall a\in \mathbb{C}$, $\lim_{\zeta\to a}\frac{\zeta^m-a^m}{\zeta-a}=\frac{(\zeta-a)(\zeta^{m-1}+\zeta^{m-2}a+\cdots+a^{m-1})}{\zeta-a}=ma^{m-1}$. i.e. $\forall a\in \mathbb{C}$, $\lim_{z\to a}\frac{z^m-a^m}{z-a}=\frac{(z-a)(z^{m-1}+z^{m-2}a+\cdots+a^{m-1})}{z-a}=ma^{m-1}$.
So polynomials are holomorphic on $\mathbb{C}$. So polynomials are holomorphic on $\mathbb{C}$.
@@ -132,20 +134,20 @@ $$
And And
$$ $$
\frac{\partial}{\partial \zeta}f=\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)f,\quad \frac{\partial}{\partial \bar{\zeta}}f=\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)f. \frac{\partial}{\partial z}f=\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)f,\quad \frac{\partial}{\partial \bar{z}}f=\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)f.
$$ $$
This definition of partial differential operators on complex functions is consistent with the definition of partial differential operators on real functions. This definition of partial differential operators on complex functions is consistent with the definition of partial differential operators on real functions.
$$ $$
\frac{\partial}{\partial x}f=\frac{\partial}{\partial \zeta}f+\frac{\partial}{\partial \bar{\zeta}}f,\quad \frac{\partial}{\partial y}f=i\left(\frac{\partial}{\partial \zeta}f-\frac{\partial}{\partial \bar{\zeta}}f\right). \frac{\partial}{\partial x}f=\frac{\partial}{\partial z}f+\frac{\partial}{\partial \bar{z}}f,\quad \frac{\partial}{\partial y}f=i\left(\frac{\partial}{\partial z}f-\frac{\partial}{\partial \bar{z}}f\right).
$$ $$
### Curves in $\mathbb{C}$ ### Curves in $\mathbb{C}$
#### Definition 2.11 (Curves in $\mathbb{C}$) #### Definition 2.11 (Curves in $\mathbb{C}$)
A curve $\gamma$ in $G\subset \mathbb{C}$ is a continuous map of an interval $I$ into $G$. We say $\gamma$ is differentiable if $\forall t_0\in I$, $\gamma'(t_0)=\lim_{t\to t_0}\frac{\gamma(t)-\gamma(t_0)}{t-t_0}$ exists. A curve $\gamma$ in $G\subset \mathbb{C}$ is a continuous map of an interval $I\in \mathbb{R}$ into $G$. We say $\gamma$ is differentiable if $\forall t_0\in I$, $\gamma'(t_0)=\lim_{t\to t_0}\frac{\gamma(t)-\gamma(t_0)}{t-t_0}$ exists.
If $\gamma'(t_0)$ is a point in $\mathbb{C}$, then $\gamma'(t_0)$ is called the tangent vector to $\gamma$ at $t_0$. If $\gamma'(t_0)$ is a point in $\mathbb{C}$, then $\gamma'(t_0)$ is called the tangent vector to $\gamma$ at $t_0$.
@@ -155,19 +157,19 @@ A curve $\gamma$ is regular if $\gamma'(t)\neq 0$ for all $t\in I$.
#### Definition of angle between two curves #### Definition of angle between two curves
Let $\gamma_1,\gamma_2$ be two curves in $G\subset \mathbb{C}$ with $\gamma_1(t_0)=\gamma_2(t_0)=\zeta_0$ for some $t_0\in I_1\cap I_2$. Let $\gamma_1,\gamma_2$ be two curves in $G\subset \mathbb{C}$ with $\gamma_1(t_0)=\gamma_2(t_0)=z_0$ for some $t_0\in I_1\cap I_2$.
The angle between $\gamma_1$ and $\gamma_2$ at $\zeta_0$ is the angle between the vectors $\gamma_1'(t_0)$ and $\gamma_2'(t_0)$. Denote as $\arg(\gamma_2'(t_0))-\arg(\gamma_1'(t_0))=\arg(\gamma_2'(t_0)\gamma_1'(t_0))$. The angle between $\gamma_1$ and $\gamma_2$ at $z_0$ is the angle between the vectors $\gamma_1'(t_0)$ and $\gamma_2'(t_0)$. Denote as $\arg(\gamma_2'(t_0))-\arg(\gamma_1'(t_0))=\arg(\gamma_2'(t_0)\gamma_1'(t_0))$.
#### Theorem of conformality #### Theorem 2.12 of conformality
Suppose $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma_1,\gamma_2$ are regular curves in $G$ with $\gamma_1(t_0)=\gamma_2(t_0)=\zeta_0$ for some $t_0\in I_1\cap I_2$. Suppose $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma_1,\gamma_2$ are regular curves in $G$ with $\gamma_1(t_0)=\gamma_2(t_0)=z_0$ for some $t_0\in I_1\cap I_2$.
If $f'(\zeta_0)\neq 0$, then the angle between $\gamma_1$ and $\gamma_2$ at $\zeta_0$ is the same as the angle between the vectors $f'(\zeta_0)\gamma_1'(t_0)$ and $f'(\zeta_0)\gamma_2'(t_0)$. If $f'(z_0)\neq 0$, then the angle between $\gamma_1$ and $\gamma_2$ at $z_0$ is the same as the angle between the vectors $f'(z_0)\gamma_1'(t_0)$ and $f'(z_0)\gamma_2'(t_0)$.
#### Lemma of function of a curve and angle #### Lemma of function of a curve and angle
If $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma$ is differentiable curve in $G$ with $\gamma(t_0)=\zeta_0$ for some $t_0\in I$. If $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma$ is differentiable curve in $G$ with $\gamma(t_0)=z_0$ for some $t_0\in I$.
Then, Then,
@@ -175,7 +177,7 @@ $$
(f\circ \gamma)'(t_0)=f'(\gamma(t_0))\gamma'(t_0). (f\circ \gamma)'(t_0)=f'(\gamma(t_0))\gamma'(t_0).
$$ $$
If Lemma of function of a curve and angle holds, then the angle between $f\circ \gamma_1$ and $f\circ \gamma_2$ at $\zeta_0$ is If Lemma of function of a curve and angle holds, then the angle between $f\circ \gamma_1$ and $f\circ \gamma_2$ at $z_0$ is
$$ $$
\begin{aligned} \begin{aligned}

View File

@@ -14,9 +14,9 @@ $$
### Angle between two curves ### Angle between two curves
Let $\gamma_1,\gamma_2$ be two curves in $G\subset \mathbb{C}$ with $\gamma_1(t_0)=\gamma_2(t_0)=\zeta_0$ for some $t_0\in I_1\cap I_2$. Let $\gamma_1,\gamma_2$ be two curves in $G\subset \mathbb{C}$ with $\gamma_1(t_0)=\gamma_2(t_0)=z_0$ for some $t_0\in I_1\cap I_2$.
The angle between $\gamma_1$ and $\gamma_2$ at $\zeta_0$ is the angle between the vectors $\gamma_1'(t_0)$ and $\gamma_2'(t_0)$. Denote as $\arg(\gamma_2'(t_0))-\arg(\gamma_1'(t_0))=\arg(\gamma_2'(t_0)\gamma_1'(t_0))$. The angle between $\gamma_1$ and $\gamma_2$ at $z_0$ is the angle between the vectors $\gamma_1'(t_0)$ and $\gamma_2'(t_0)$. Denote as $\arg(\gamma_2'(t_0))-\arg(\gamma_1'(t_0))=\arg(\gamma_2'(t_0)\gamma_1'(t_0))$.
### Cauchy-Riemann equations ### Cauchy-Riemann equations
@@ -28,13 +28,13 @@ $$
### Theorem of conformality ### Theorem of conformality
Suppose $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma_1,\gamma_2$ are regular curves in $G$ with $\gamma_1(t_0)=\gamma_2(t_0)=\zeta_0$ for some $t_0\in I_1\cap I_2$. Suppose $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma_1,\gamma_2$ are regular curves in $G$ with $\gamma_1(t_0)=\gamma_2(t_0)=z_0$ for some $t_0\in I_1\cap I_2$.
If $f'(\zeta_0)\neq 0$, then the angle between $\gamma_1$ and $\gamma_2$ at $\zeta_0$ is the same as the angle between the vectors $f'(\zeta_0)\gamma_1'(t_0)$ and $f'(\zeta_0)\gamma_2'(t_0)$. If $f'(z_0)\neq 0$, then the angle between $\gamma_1$ and $\gamma_2$ at $z_0$ is the same as the angle between the vectors $f'(z_0)\gamma_1'(t_0)$ and $f'(z_0)\gamma_2'(t_0)$.
### Lemma of function of a curve and angle ### Lemma of function of a curve and angle
If $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma$ is differentiable curve in $G$ with $\gamma(t_0)=\zeta_0$ for some $t_0\in I$. If $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma$ is differentiable curve in $G$ with $\gamma(t_0)=z_0$ for some $t_0\in I$.
Then, Then,
@@ -60,12 +60,14 @@ $$
> >
> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$. (By Taylor expansion) > $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$. (By Taylor expansion)
Since $f$ is holomorphic at $\gamma(t_0)=\zeta_0$, we have Since $f$ is holomorphic at $\gamma(t_0)=z_0$, we have
$$ $$
f(\zeta_0)=f(\zeta_0)+(\zeta-\zeta_0)f'(\zeta_0)+o(\zeta-\zeta_0) f(z_0)=f(z_0)+(z-z_0)f'(z_0)+o(z-z_0)
$$ $$
> This result comes from Taylor Expansion of the derivative of the function around the point $z_0$
and and
$$ $$
@@ -85,7 +87,7 @@ $$
\end{aligned} \end{aligned}
$$ $$
EOP QED
#### Definition 2.12 (Conformal function) #### Definition 2.12 (Conformal function)
@@ -93,7 +95,7 @@ A function $f:G\to \mathbb{C}$ is called conformal if it preserves the angle bet
#### Theorem 2.13 (Conformal function) #### Theorem 2.13 (Conformal function)
If $f:G\to \mathbb{C}$ is conformal at $\zeta_0\in G$, then $f$ is holomorphic at $\zeta_0$ and $f'(\zeta_0)\neq 0$. If $f:G\to \mathbb{C}$ is conformal at $z_0\in G$, then $f$ is holomorphic at $z_0$ and $f'(z_0)\neq 0$.
Example: Example:
@@ -105,20 +107,20 @@ is not conformal at $z=0$ because $f'(0)=0$.
#### Lemma of conformal function #### Lemma of conformal function
Suppose $f$ is real differentiable, let $a=\frac{\partial f}{\partial \zeta}(\zeta_0)$, $b=\frac{\partial f}{\partial \overline{\zeta}}(\zeta_0)$. Suppose $f$ is real differentiable, let $a=\frac{\partial f}{\partial z}(z_0)$, $b=\frac{\partial f}{\partial \overline{z}}(z_0)$.
Let $\gamma(t_0)=\zeta_0$. Then $(f\circ \gamma)'(t_0)=a\gamma'(t_0)+b\overline{\gamma'(t_0)}$. Let $\gamma(t_0)=z_0$. Then $(f\circ \gamma)'(t_0)=a\gamma'(t_0)+b\overline{\gamma'(t_0)}$.
Proof: Proof:
$f=u+iv$, $u,v$ are real differentiable. $f=u+iv$, $u,v$ are real differentiable.
$$ $$
a=\frac{\partial f}{\partial \zeta}=\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) a=\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)
$$ $$
$$ $$
b=\frac{\partial f}{\partial \overline{\zeta}}=\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) b=\frac{\partial f}{\partial \overline{z}}=\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)
$$ $$
$$ $$
@@ -131,7 +133,7 @@ $$
$$ $$
\begin{aligned} \begin{aligned}
(f\circ \gamma)'(t_0)&=\frac{\partial f}{\partial \zeta}(\gamma(t_0))\gamma'(t_0)+\frac{\partial f}{\partial \overline{\zeta}}(\gamma(t_0))\overline{\gamma'(t_0)} \\ (f\circ \gamma)'(t_0)&=\frac{\partial f}{\partial z}(\gamma(t_0))\gamma'(t_0)+\frac{\partial f}{\partial \overline{z}}(\gamma(t_0))\overline{\gamma'(t_0)} \\
&=\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\right]\left(\frac{d\alpha}{dt}+i\frac{d\beta}{dt}\right)\\ &=\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\right]\left(\frac{d\alpha}{dt}+i\frac{d\beta}{dt}\right)\\
&+\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right]\left(\frac{d\beta}{dt}-i\frac{d\alpha}{dt}\right) \\ &+\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right]\left(\frac{d\beta}{dt}-i\frac{d\alpha}{dt}\right) \\
&=\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\frac{d\alpha}{dt}-\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\frac{d\beta}{dt}\right]\\ &=\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\frac{d\alpha}{dt}-\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\frac{d\beta}{dt}\right]\\
@@ -142,56 +144,56 @@ $$
\end{aligned} \end{aligned}
$$ $$
EOP QED
#### Theorem of differentiability #### Theorem of differentiability
Let $f:G\to \mathbb{C}$ be a function defined on an open set $G\subset \mathbb{C}$ that is both holomorphic and (real) differentiable, where $f=u+iv$ with $u,v$ real differentiable functions. Let $f:G\to \mathbb{C}$ be a function defined on an open set $G\subset \mathbb{C}$ that is both holomorphic and (real) differentiable, where $f=u+iv$ with $u,v$ real differentiable functions.
Then, $f$ is conformal at every point $\zeta_0\in G$ if and only if $f$ is holomorphic at $\zeta_0$ and $f'(\zeta_0)\neq 0$. Then, $f$ is conformal at every point $z_0\in G$ if and only if $f$ is holomorphic at $z_0$ and $f'(z_0)\neq 0$.
Proof: Proof:
We prove the equivalence in two parts. We prove the equivalence in two parts.
($\implies$) Suppose that $f$ is conformal at $\zeta_0$. By definition, conformality means that $f$ preserves angles (including their orientation) between any two intersecting curves through $\zeta_0$. In the language of real analysis, this requires that the (real) derivative (Jacobian) of $f$ at $\zeta_0$, $Df(\zeta_0)$, acts as a similarity transformation. Any similarity in $\mathbb{R}^2$ can be written as a rotation combined with a scaling; in particular, its matrix representation has the form ($\implies$) Suppose that $f$ is conformal at $z_0$. By definition, conformality means that $f$ preserves angles (including their orientation) between any two intersecting curves through $z_0$. In the language of real analysis, this requires that the (real) derivative (Jacobian) of $f$ at $z_0$, $Df(z_0)$, acts as a similarity transformation. Any similarity in $\mathbb{R}^2$ can be written as a rotation combined with a scaling; in particular, its matrix representation has the form
$$ $$
\begin{pmatrix} \begin{pmatrix}
A & -B \\ A & -B \\
B & A B & A
\end{pmatrix}, \end{pmatrix},
$$ $$
for some real numbers $A$ and $B$. This is exactly the matrix corresponding to multiplication by the complex number $a=A+iB$. Therefore, the Cauchy-Riemann equations must hold at $\zeta_0$, implying that $f$ is holomorphic at $\zeta_0$. Moreover, because the transformation is nondegenerate (preserving angles implies nonzero scaling), we must have $f'(\zeta_0)=a\neq 0$. for some real numbers $A$ and $B$. This is exactly the matrix corresponding to multiplication by the complex number $a=A+iB$. Therefore, the Cauchy-Riemann equations must hold at $z_0$, implying that $f$ is holomorphic at $z_0$. Moreover, because the transformation is nondegenerate (preserving angles implies nonzero scaling), we must have $f'(z_0)=a\neq 0$.
($\impliedby$) Now suppose that $f$ is holomorphic at $\zeta_0$ and $f'(\zeta_0)\neq 0$. Then by the definition of the complex derivative, the first-order (linear) approximation of $f$ near $\zeta_0$ is ($\impliedby$) Now suppose that $f$ is holomorphic at $z_0$ and $f'(z_0)\neq 0$. Then by the definition of the complex derivative, the first-order (linear) approximation of $f$ near $z_0$ is
$$ $$
f(\zeta_0+h)=f(\zeta_0)+f'(\zeta_0)h+o(|h|), f(z_0+h)=f(z_0)+f'(z_0)h+o(|h|),
$$ $$
for small $h\in\mathbb{C}$. Multiplication by the nonzero complex number $f'(\zeta_0)$ is exactly a rotation and scaling (i.e., a similarity transformation). Therefore, for any smooth curve $\gamma(t)$ with $\gamma(t_0)=\zeta_0$, we have for small $h\in\mathbb{C}$. Multiplication by the nonzero complex number $f'(z_0)$ is exactly a rotation and scaling (i.e., a similarity transformation). Therefore, for any smooth curve $\gamma(t)$ with $\gamma(t_0)=z_0$, we have
$$ $$
(f\circ\gamma)'(t_0)=f'(\zeta_0)\gamma'(t_0), (f\circ\gamma)'(t_0)=f'(z_0)\gamma'(t_0),
$$ $$
and the angle between any two tangent vectors at $\zeta_0$ is preserved (up to the fixed rotation). Hence, $f$ is conformal at $\zeta_0$. and the angle between any two tangent vectors at $z_0$ is preserved (up to the fixed rotation). Hence, $f$ is conformal at $z_0$.
For further illustration, consider the special case when $f$ is an affine map. For further illustration, consider the special case when $f$ is an affine map.
Case 1: Suppose Case 1: Suppose
$$ $$
f(\zeta)=a\zeta+b\overline{\zeta}. f(z)=az+b\overline{z}.
$$ $$
The Wirtinger derivatives of $f$ are The Wirtinger derivatives of $f$ are
$$ $$
\frac{\partial f}{\partial \zeta}=a \quad \text{and} \quad \frac{\partial f}{\partial \overline{\zeta}}=b. \frac{\partial f}{\partial z}=a \quad \text{and} \quad \frac{\partial f}{\partial \overline{z}}=b.
$$ $$
For $f$ to be holomorphic, we require $\frac{\partial f}{\partial \overline{\zeta}}=b=0$. Moreover, to have a nondegenerate (angle-preserving) map, we must have $a\neq 0$. If $b\neq 0$, then the map mixes $\zeta$ and $\overline{\zeta}$, and one can check that the linearization maps the real axis $\mathbb{R}$ into the set $\{(a+b)t\}$, which does not uniformly scale and rotate all directions. Thus, $f$ fails to be conformal when $b\neq 0$. For $f$ to be holomorphic, we require $\frac{\partial f}{\partial \overline{z}}=b=0$. Moreover, to have a nondegenerate (angle-preserving) map, we must have $a\neq 0$. If $b\neq 0$, then the map mixes $z$ and $\overline{z}$, and one can check that the linearization maps the real axis $\mathbb{R}$ into the set $\{(a+b)t\}$, which does not uniformly scale and rotate all directions. Thus, $f$ fails to be conformal when $b\neq 0$.
Case 2: For a general holomorphic function, the lemma of conformal functions shows that if Case 2: For a general holomorphic function, the lemma of conformal functions shows that if
$$ $$
(f\circ \gamma)'(t_0)=f'(\zeta_0)\gamma'(t_0) (f\circ \gamma)'(t_0)=f'(z_0)\gamma'(t_0)
$$ $$
for any differentiable curve $\gamma$ through $\zeta_0$, then the effect of $f$ near $\zeta_0$ is exactly given by multiplication by $f'(\zeta_0)$. Since multiplication by a nonzero complex number is a similarity transformation, $f$ is conformal at $\zeta_0$. for any differentiable curve $\gamma$ through $z_0$, then the effect of $f$ near $z_0$ is exactly given by multiplication by $f'(z_0)$. Since multiplication by a nonzero complex number is a similarity transformation, $f$ is conformal at $z_0$.
EOP QED
### Harmonic function ### Harmonic function
@@ -227,7 +229,7 @@ $$
\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 v}{\partial x\partial y}-\frac{\partial^2 v}{\partial y\partial x}=0. \Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 v}{\partial x\partial y}-\frac{\partial^2 v}{\partial y\partial x}=0.
$$ $$
EOP QED
If $v$ is such that $f=u+iv$ is holomorphic on $\Omega$, then $v$ is called harmonic conjugate of $u$ on $\Omega$. If $v$ is such that $f=u+iv$ is holomorphic on $\Omega$, then $v$ is called harmonic conjugate of $u$ on $\Omega$.

View File

@@ -18,14 +18,14 @@ So
$$ $$
\begin{aligned} \begin{aligned}
\frac{\partial f}{\partial \zeta}&=\frac{1}{2}\left(u_x+v_y\right)-i\frac{1}{2}\left(v_x+u_y\right)\\ \frac{\partial f}{\partial z}&=\frac{1}{2}\left(u_x+v_y\right)-i\frac{1}{2}\left(v_x+u_y\right)\\
&=\frac{1}{2}\left(\alpha+\delta\right)-i\frac{1}{2}\left(\beta-\sigma\right)\\ &=\frac{1}{2}\left(\alpha+\delta\right)-i\frac{1}{2}\left(\beta-\sigma\right)\\
\end{aligned} \end{aligned}
$$ $$
$$ $$
\begin{aligned} \begin{aligned}
\frac{\partial f}{\partial \overline{\zeta}}&=\frac{1}{2}\left(u_x+v_y\right)+i\frac{1}{2}\left(v_x+u_y\right)\\ \frac{\partial f}{\partial \overline{z}}&=\frac{1}{2}\left(u_x+v_y\right)+i\frac{1}{2}\left(v_x+u_y\right)\\
&=\frac{1}{2}\left(\alpha-\delta\right)+i\frac{1}{2}\left(\beta+\sigma\right)\\ &=\frac{1}{2}\left(\alpha-\delta\right)+i\frac{1}{2}\left(\beta+\sigma\right)\\
\end{aligned} \end{aligned}
$$ $$
@@ -42,11 +42,11 @@ $$
So, So,
$$ $$
\frac{\partial f}{\partial \zeta}=\frac{1}{2}(\alpha+\alpha)+i\frac{1}{2}(\beta+\beta)=a \frac{\partial f}{\partial z}=\frac{1}{2}(\alpha+\alpha)+i\frac{1}{2}(\beta+\beta)=a
$$ $$
$$ $$
\frac{\partial f}{\partial \overline{\zeta}}=\frac{1}{2}(\alpha-\alpha)+i\frac{1}{2}(\beta-\beta)=0 \frac{\partial f}{\partial \overline{z}}=\frac{1}{2}(\alpha-\alpha)+i\frac{1}{2}(\beta-\beta)=0
$$ $$
> Less pain to represent a complex function using four real numbers. > Less pain to represent a complex function using four real numbers.
@@ -59,10 +59,10 @@ Let $a,b,c,d$ be complex numbers. such that $ad-bc\neq 0$.
The linear fractional transformation is defined as The linear fractional transformation is defined as
$$ $$
\phi(\zeta)=\frac{a\zeta+b}{c\zeta+d} \phi(z)=\frac{az+b}{cz+d}
$$ $$
If we let $\psi(\zeta)=\frac{e\zeta-f}{-g\zeta+h}$ also be a linear fractional transformation, then $\phi\circ\psi$ is also a linear fractional transformation. If we let $\psi(z)=\frac{ez-f}{-gz+h}$ also be a linear fractional transformation, then $\phi\circ\psi$ is also a linear fractional transformation.
New coefficients can be solved by New coefficients can be solved by
@@ -82,7 +82,7 @@ m&n
\end{pmatrix} \end{pmatrix}
$$ $$
So $\phi\circ\psi(\zeta)=\frac{k\zeta+l}{m\zeta+n}$ So $\phi\circ\psi(z)=\frac{kz+l}{mz+n}$
### Complex projective space ### Complex projective space
@@ -98,7 +98,7 @@ $\mathbb{C}P^1$ is the set of lines through the origin in $\mathbb{C}$.
We defined $(a,b)\sim(c,d),(a,b),(c,d)\in\mathbb{C}\setminus\{(0,0)\}$ if $\exists t\neq 0,t\in\mathbb{C}\setminus\{0\}$ such that $(a,b)=(tc,td)$. We defined $(a,b)\sim(c,d),(a,b),(c,d)\in\mathbb{C}\setminus\{(0,0)\}$ if $\exists t\neq 0,t\in\mathbb{C}\setminus\{0\}$ such that $(a,b)=(tc,td)$.
So, $\forall \zeta\in\mathbb{C}\setminus\{0\}$: So, $\forall z\in\mathbb{C}\setminus\{0\}$:
If $a\neq 0$, then $(a,b)\sim(1,\frac{b}{a})$. If $a\neq 0$, then $(a,b)\sim(1,\frac{b}{a})$.
@@ -116,33 +116,33 @@ c & d
Suppose $M$ is non-singular. Then $ad-bc\neq 0$. Suppose $M$ is non-singular. Then $ad-bc\neq 0$.
If $M\begin{pmatrix} If $M\begin{pmatrix}
\zeta_1\\ z_1\\
\zeta_2 z_2
\end{pmatrix}=\begin{pmatrix} \end{pmatrix}=\begin{pmatrix}
\omega_1\\ \omega_1\\
\omega_2 \omega_2
\end{pmatrix}$, then $M\begin{pmatrix} \end{pmatrix}$, then $M\begin{pmatrix}
t\zeta_1\\ tz_1\\
t\zeta_2 tz_2
\end{pmatrix}=\begin{pmatrix} \end{pmatrix}=\begin{pmatrix}
t\omega_1\\ t\omega_1\\
t\omega_2 t\omega_2
\end{pmatrix}$. \end{pmatrix}$.
So, $M$ induces a map $\phi_M:\mathbb{C}P^1\to\mathbb{C}P^1$ defined by $M\begin{pmatrix} So, $M$ induces a map $\phi_M:\mathbb{C}P^1\to\mathbb{C}P^1$ defined by $M\begin{pmatrix}
\zeta\\ z\\
1 1
\end{pmatrix}=\begin{pmatrix} \end{pmatrix}=\begin{pmatrix}
\frac{a\zeta+b}{c\zeta+d}\\ \frac{az+b}{cz+d}\\
1 1
\end{pmatrix}$. \end{pmatrix}$.
$\phi_M(\zeta)=\frac{a\zeta+b}{c\zeta+d}$. $\phi_M(z)=\frac{az+b}{cz+d}$.
If we let $M_2=\begin{pmatrix} If we let $M_2=\begin{pmatrix}
e &f\\ e &f\\
g &h g &h
\end{pmatrix}$, where $ad-bc\neq 0$ and $eh-fg\neq 0$, then $\phi_{M_2}(\zeta)=\frac{e\zeta+f}{g\zeta+h}$. \end{pmatrix}$, where $ad-bc\neq 0$ and $eh-fg\neq 0$, then $\phi_{M_2}(z)=\frac{ez+f}{gz+h}$.
So, $M_2M_1=\begin{pmatrix} So, $M_2M_1=\begin{pmatrix}
a&b\\ a&b\\
@@ -151,15 +151,15 @@ c&d
e&f\\ e&f\\
g&h g&h
\end{pmatrix}=\begin{pmatrix} \end{pmatrix}=\begin{pmatrix}
\zeta\\ z\\
1 1
\end{pmatrix}$. \end{pmatrix}$.
This also gives $\begin{pmatrix} This also gives $\begin{pmatrix}
k\zeta+l\\ kz+l\\
m\zeta+n mz+n
\end{pmatrix}\sim\begin{pmatrix} \end{pmatrix}\sim\begin{pmatrix}
\frac{k\zeta+l}{m\zeta+n}\\ \frac{kz+l}{mz+n}\\
1 1
\end{pmatrix}$. \end{pmatrix}$.
@@ -187,17 +187,17 @@ If $\phi$ is a non-constant linear fractional transformation, then $\phi$ is con
Proof: Proof:
Know that $\phi_0\circ\phi(\zeta)=\zeta$, Know that $\phi_0\circ\phi(z)=z$,
Then $\phi(\zeta)=\phi_0^{-1}\circ\phi\circ\phi_0(\zeta)$. Then $\phi(z)=\phi_0^{-1}\circ\phi\circ\phi_0(z)$.
So $\phi(\zeta)=\frac{a\zeta+b}{c\zeta+d}$. So $\phi(z)=\frac{az+b}{cz+d}$.
$\phi:\mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$ which gives $\phi(\infty)=\frac{a}{c}$ and $\phi(-\frac{d}{c})=\infty$. $\phi:\mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$ which gives $\phi(\infty)=\frac{a}{c}$ and $\phi(-\frac{d}{c})=\infty$.
So, $\phi$ is conformal. So, $\phi$ is conformal.
EOP QED
#### Proposition 3.4 of Fixed points #### Proposition 3.4 of Fixed points
@@ -205,7 +205,7 @@ Any non-constant linear fractional transformation except the identity transforma
Proof: Proof:
Let $\phi(\zeta)=\frac{a\zeta+b}{c\zeta+d}$. Let $\phi(z)=\frac{az+b}{cz+d}$.
Case 1: $c=0$ Case 1: $c=0$
@@ -213,19 +213,19 @@ Then $\infty$ is a fixed point.
Case 2: $c\neq 0$ Case 2: $c\neq 0$
Then $\phi(\zeta)=\frac{a\zeta+b}{c\zeta+d}$. Then $\phi(z)=\frac{az+b}{cz+d}$.
The solution of $\phi(\zeta)=\zeta$ is $c\zeta^2+(d-a)\zeta-b=0$. The solution of $\phi(z)=z$ is $cz^2+(d-a)z-b=0$.
Such solutions are $\zeta=\frac{-(d-a)\pm\sqrt{(d-a)^2+4bc}}{2c}$. Such solutions are $z=\frac{-(d-a)\pm\sqrt{(d-a)^2+4bc}}{2c}$.
So, $\phi$ has 1 or 2 fixed points. So, $\phi$ has 1 or 2 fixed points.
EOP QED
#### Proposition 3.5 of triple transitivity #### Proposition 3.5 of triple transitivity
If $\zeta_1,\zeta_2,\zeta_3\in\mathbb{C}P^1$ are distinct, then there exists a non-constant linear fractional transformation $\phi$ such that $\phi(\zeta_1)=\zeta_2$ and $\phi(\zeta_3)=\infty$. If $z_1,z_2,z_3\in\mathbb{C}P^1$ are distinct, then there exists a non-constant linear fractional transformation $\phi$ such that $\phi(z_1)=z_2$ and $\phi(z_3)=\infty$.
Proof as homework. Proof as homework.
@@ -235,6 +235,4 @@ We defined clircle to be a circle or a line.
If $\phi$ is a non-constant linear fractional transformation, then $\phi$ maps clircles to clircles. If $\phi$ is a non-constant linear fractional transformation, then $\phi$ maps clircles to clircles.
Proof: Proof continue on next lecture.
Continue on next lecture.

View File

@@ -12,16 +12,16 @@ We defined clircle to be a circle or a line.
The circle equation is: The circle equation is:
Let $\zeta=u+iv$ be the center of the circle, $r$ be the radius of the circle. Let $z=u+iv$ be the center of the circle, $r$ be the radius of the circle.
$$ $$
circle=\{z\in\mathbb{C}:|\zeta-c|=r\} circle=\{z\in\mathbb{C}:|z-c|=r\}
$$ $$
This is: This is:
$$ $$
|\zeta|^2-c\overline{\zeta}-\overline{c}\zeta+|c|^2-r^2=0 |z|^2-c\overline{z}-\overline{c}z+|c|^2-r^2=0
$$ $$
If $\phi$ is a non-constant linear fractional transformation, then $\phi$ maps clircles to clircles. If $\phi$ is a non-constant linear fractional transformation, then $\phi$ maps clircles to clircles.
@@ -29,7 +29,7 @@ If $\phi$ is a non-constant linear fractional transformation, then $\phi$ maps c
We claim that a map is circle preserving if and only if for some $\alpha,\beta,\gamma,\delta\in\mathbb{R}$. We claim that a map is circle preserving if and only if for some $\alpha,\beta,\gamma,\delta\in\mathbb{R}$.
$$ $$
\alpha|\zeta|^2+\beta Re(\zeta)+\gamma Im(\zeta)+\delta=0 \alpha|z|^2+\beta Re(z)+\gamma Im(z)+\delta=0
$$ $$
when $\alpha=0$, it is a line. when $\alpha=0$, it is a line.
@@ -38,7 +38,7 @@ when $\alpha\neq 0$, it is a circle.
Proof: Proof:
Let $w=u+iv=\frac{1}{\zeta}$, so $\frac{1}{w}=\frac{u}{u^2+v^2}-i\frac{v}{u^2+v^2}$. Let $w=u+iv=\frac{1}{z}$, so $\frac{1}{w}=\frac{u}{u^2+v^2}-i\frac{v}{u^2+v^2}$.
Then the original equation becomes: Then the original equation becomes:
@@ -48,13 +48,13 @@ $$
Which is in the form of circle equation. Which is in the form of circle equation.
EOP QED
## Chapter 4 Elementary functions ## Chapter 4 Elementary functions
> $e^t=\sum_{n=0}^{\infty}\frac{t^n}{n!}$ > $e^t=\sum_{n=0}^{\infty}\frac{t^n}{n!}$
So, following the definition of $e^\zeta$, we have: So, following the definition of $e^z$, we have:
$$ $$
\begin{aligned} \begin{aligned}
@@ -65,51 +65,51 @@ e^{x+iy}&=e^xe^{iy} \\
\end{aligned} \end{aligned}
$$ $$
### $e^\zeta$ ### $e^z$
The exponential of $e^\zeta=x+iy$ is defined as: The exponential of $e^z=x+iy$ is defined as:
$$ $$
e^\zeta=exp(\zeta)=e^x(\cos y+i\sin y) e^z=exp(z)=e^x(\cos y+i\sin y)
$$ $$
So, So,
$$ $$
|e^\zeta|=|e^x||\cos y+i\sin y|=e^x |e^z|=|e^x||\cos y+i\sin y|=e^x
$$ $$
#### Theorem 4.3 $e^\zeta$ is holomorphic #### Theorem 4.3 $e^z$ is holomorphic
$e^\zeta$ is holomorphic on $\mathbb{C}$. $e^z$ is holomorphic on $\mathbb{C}$.
Proof: Proof:
$$ $$
\begin{aligned} \begin{aligned}
\frac{\partial}{\partial\zeta}e^\zeta&=\frac{1}{2}\left(\frac{\partial}{\partial x}+\frac{i}{\partial y}\right)e^x(\cos y+i\sin y) \\ \frac{\partial}{\partial z}e^z&=\frac{1}{2}\left(\frac{\partial}{\partial x}+\frac{i}{\partial y}\right)e^x(\cos y+i\sin y) \\
&=\frac{1}{2}e^x(\cos y+i\sin y)+ie^x(-\sin y+i\cos y) \\ &=\frac{1}{2}e^x(\cos y+i\sin y)+ie^x(-\sin y+i\cos y) \\
&=0 &=0
\end{aligned} \end{aligned}
$$ $$
EOP QED
#### Theorem 4.4 $e^\zeta$ is periodic #### Theorem 4.4 $e^z$ is periodic
$e^\zeta$ is periodic with period $2\pi i$. $e^z$ is periodic with period $2\pi i$.
Proof: Proof:
$$ $$
e^{\zeta+2\pi i}=e^\zeta e^{2\pi i}=e^\zeta\cdot 1=e^\zeta e^{z+2\pi i}=e^z e^{2\pi i}=e^z\cdot 1=e^z
$$ $$
EOP QED
#### Theorem 4.5 $e^\zeta$ as a map #### Theorem 4.5 $e^z$ as a map
$e^\zeta$ is a map from $\mathbb{C}$ to $\mathbb{C}$ with period $2\pi i$. $e^z$ is a map from $\mathbb{C}$ to $\mathbb{C}$ with period $2\pi i$.
$$ $$
e^{\pi i}+1=0 e^{\pi i}+1=0
@@ -119,36 +119,36 @@ This is a map from cartesian coordinates to polar coordinates, where $e^x$ is th
This map attains every value in $\mathbb{C}\setminus\{0\}$. This map attains every value in $\mathbb{C}\setminus\{0\}$.
#### Definition 4.6-8 $\cos\zeta$ and $\sin\zeta$ #### Definition 4.6-8 $\cos z$ and $\sin z$
$$ $$
\cos\zeta=\frac{1}{2}(e^{i\zeta}+e^{-i\zeta}) \cos z=\frac{1}{2}(e^{iz}+e^{-iz})
$$ $$
$$ $$
\sin\zeta=\frac{1}{2i}(e^{i\zeta}-e^{-i\zeta}) \sin z=\frac{1}{2i}(e^{iz}-e^{-iz})
$$ $$
$$ $$
\cosh\zeta=\frac{1}{2}(e^\zeta+e^{-\zeta}) \cosh z=\frac{1}{2}(e^z+e^{-z})
$$ $$
$$ $$
\sinh\zeta=\frac{1}{2}(e^\zeta-e^{-\zeta}) \sinh z=\frac{1}{2}(e^z-e^{-z})
$$ $$
From this definition, we can see that $\cos\zeta$ and $\sin\zeta$ are no longer bounded. From this definition, we can see that $\cos z$ and $\sin z$ are no longer bounded in the complex plane.
And this definition is still compatible with the previous definition of $\cos$ and $\sin$ when $\zeta$ is real. And this definition is still compatible with the previous definition of $\cos$ and $\sin$ when $z$ is real.
Moreover, Moreover,
$$ $$
\cosh(i\zeta)=\cos\zeta \cosh(iz)=\cos z
$$ $$
$$ $$
\sinh(i\zeta)=i\sin\zeta \sinh(iz)=i\sin z
$$ $$
### Logarithm ### Logarithm
@@ -175,37 +175,58 @@ If $y\in(-\pi,\pi]$, then $\log a=b$ means $e^b=a$ and $Im(b)\in(-\pi,\pi]$.
If $a=re^{i\theta}$, then $\log a=\log r+i(\theta_0+2k\pi)$. If $a=re^{i\theta}$, then $\log a=\log r+i(\theta_0+2k\pi)$.
#### Definition 4.10 #### Definition 4.10 of Branch of $\arg z$ and $\log z$
Let $G$ be an open connected subset of $\mathbb{C}\setminus\{0\}$. Let $G$ be an open connected subset of $\mathbb{C}\setminus\{0\}$.
A branch of $\arg(\zeta)$ in $G$ is a continuous function $\alpha$, such that $\alpha(\zeta)$ is a value of $\arg(\zeta)$. A branch of $\arg(z)$ in $G$ is a continuous function $\alpha:G\to G$, such that $\alpha(z)$ is a value of $\arg(z)$.
A branch of $\log(\zeta)$ in $G$ is a continuous function $\beta$, such that $e^{\beta(\zeta)}=\zeta$. A branch of $\log(z)$ in $G$ is a continuous function $\beta$, such that $e^{\beta(z)}=z$.
Note: $G$ has a branch of $\arg(\zeta)$ if and only if it has a branch of $\log(\zeta)$. Note: $G$ has a branch of $\arg(z)$ if and only if it has a branch of $\log(z)$.
If $G=\mathbb{C}\setminus\{0\}$, then not branch of $\arg(\zeta)$ exists. Proof:
Suppose $\alpha_1$ and $\alpha_2$ are two branches of $\arg(\zeta)$ in $G$. Suppose there exists $\alpha(z)$ such that $\forall z\in G$, $\alpha(z)\in G$, then $l(z)=\ln|z|+i\alpha(z)$ is a branch of $\log(z)$.
Suppose there exists $l(z)$ such that $\forall z\in G$, $l(z)\in G$, then $\alpha(z)=Im(z)$ is a branch of $\arg(z)$.
QED
If $G=\mathbb{C}\setminus\{0\}$, then not branch of $\arg(z)$ exists.
#### Corollary of 4.10
Suppose $\alpha_1$ and $\alpha_2$ are two branches of $\arg(z)$ in $G$.
Then, Then,
$$ $$
\alpha_1(\zeta)-\alpha_2(\zeta)=2k\pi i \alpha_1(z)-\alpha_2(z)=2k\pi
$$
for some $k\in\mathbb{Z}$.
Suppose $l_1$ and $l_2$ are two branches of $\log(z)$ in $G$.
Then,
$$
l_1(z)-l_2(z)=2k\pi i
$$ $$
for some $k\in\mathbb{Z}$. for some $k\in\mathbb{Z}$.
#### Theorem 4.11 #### Theorem 4.11
$\log(\zeta)$ is holomorphic on $\mathbb{C}\setminus\{0\}$. $\log(z)$ is holomorphic on $\mathbb{C}\setminus\{0\}$.
Proof: Proof:
Method 1: Use polar coordinates. (See in homework) Method 1: Use polar coordinates. (See in homework)
Method 2: Use the fact that $\log(\zeta)$ is the inverse of $e^\zeta$. Method 2: Use the fact that $\log(z)$ is the inverse of $e^z$.
Suppose $h=s+it$, $e^h=e^s(\cos t+i\sin t)$, $e^h-1=e^s(\cos t-1)+i\sin t$. So Suppose $h=s+it$, $e^h=e^s(\cos t+i\sin t)$, $e^h-1=e^s(\cos t-1)+i\sin t$. So

View File

@@ -8,7 +8,7 @@ $$
e^z=e^{x+iy}=e^x(\cos y+i\sin y) e^z=e^{x+iy}=e^x(\cos y+i\sin y)
$$ $$
### Logarithm ### Logarithm Reviews
#### Definition 4.9 Logarithm #### Definition 4.9 Logarithm
@@ -24,28 +24,52 @@ A branch of logarithm is a continuous function $f$ on a domain $D$ such that $e^
#### Theorem 4.11 #### Theorem 4.11
$\log(\zeta)$ is holomorphic on $\mathbb{C}\setminus\{0\}$. $\log(z)$ is holomorphic on $\mathbb{C}\setminus\{0\}$.
Proof: Proof:
We proved that $\frac{\partial}{\partial\overline{z}}e^{\zeta}=0$ on $\mathbb{C}\setminus\{0\}$. We proved that $\frac{\partial}{\partial\overline{z}}e^{z}=0$ on $\mathbb{C}\setminus\{0\}$.
Then $\frac{d}{dz}e^{\zeta}=\frac{\partial}{\partial x}e^{\zeta}=0$ if we know that $e^{\zeta}$ is holomorphic. Then $\frac{d}{dz}e^{z}=\frac{\partial}{\partial x}e^{z}=0$ if we know that $e^{z}$ is holomorphic.
Since $\frac{d}{dz}e^{\zeta}=e^{\zeta}$, we know that $e^{\zeta}$ is conformal, so any branch of logarithm is also conformal. Since $\frac{d}{dz}e^{z}=e^{z}$, we know that $e^{z}$ is conformal, so any branch of logarithm is also conformal.
Since $\exp(\log(\zeta))=\zeta$, we know that $\log(\zeta)$ is the inverse of $\exp(\zeta)$, so $\frac{d}{dz}\log(\zeta)=\frac{1}{e^{\log(\zeta)}}=\frac{1}{\zeta}$. Since $\exp(\log(z))=z$, we know that $\log(z)$ is the inverse of $\exp(z)$, so $\frac{d}{dz}\log(z)=\frac{1}{e^{\log(z)}}=\frac{1}{z}$.
EOP QED
We call $\frac{f'}{f}$ the logarithmic derivative of $f$. We call $\frac{f'}{f}$ the logarithmic derivative of $f$.
#### Definition 4.16
_I don't know if this material is covered or not, so I will add it here to prevent confusion for future readers_
If $a$ and $c$ are complex numbers, with $a\neq 0$, then by the values of $a^c$ one means the value of $e^{c\log a}$.
For example, $1^i=e^{i (2\pi n i)}$
If you accidentally continue on this section and find it interesting, you will find Riemann zeta function
$$
z(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}
$$
And analytic continuation for such function for number less than or equal to $1$.
And perhaps find trivial zeros for negative integers on real line. It is important to note that the Riemann zeta function has non-trivial zeros, which are located in the critical strip where the real part of $s$ is between 0 and 1. The famous Riemann Hypothesis conjectures that all non-trivial zeros lie on the critical line where the real part of $s$ is $\frac{1}{2}$.
## Chapter 5. Power series ## Chapter 5. Power series
### Convergence
#### Necessary Condition for Convergence
If $\sum_{n=0}^{\infty}c_n$ converges, then $\lim_{n\to\infty}c_n=0$ exists. If $\sum_{n=0}^{\infty}c_n$ converges, then $\lim_{n\to\infty}c_n=0$ exists.
### Geometric series ### Geometric series
Let $c$ be a complex number
$$ $$
\sum_{n=0}^{N}c^n=\frac{1-c^{N+1}}{1-c} \sum_{n=0}^{N}c^n=\frac{1-c^{N+1}}{1-c}
$$ $$
@@ -66,11 +90,13 @@ If $|c|<1$, then $\lim_{N\to\infty}c^{N+1}=0$, so $\lim_{N\to\infty}(1-c)(1+c+c^
If $|c|\geq 1$, then $c^{N+1}$ does not converge to 0, so the series diverges. If $|c|\geq 1$, then $c^{N+1}$ does not converge to 0, so the series diverges.
EOP QED
### Convergence #### Theorem 5.4 (Triangle Inequality for Series)
#### Definition 5.4 If the series $\sum_{n=0}^{\infty}c_n$ converges, then $\left|\sum_{n=0}^\infty c_n\right|\leq \sum_{n=0}^{\infty}|c_n|$.
#### Definition 5.5
$$ $$
\sum_{n=0}^{\infty}c_n \sum_{n=0}^{\infty}c_n
@@ -96,57 +122,61 @@ A sequence of functions $f_n$ **converges locally uniformly** to $f$ on a set $G
A sequence of functions $f_n$ **converges uniformly on compacta** to $f$ on a set $G$ if it converges uniformly on every compact subset of $G$. A sequence of functions $f_n$ **converges uniformly on compacta** to $f$ on a set $G$ if it converges uniformly on every compact subset of $G$.
#### Theorem 5.? #### Theorem 5.7
If the subsequence of a converging sequence of functions converges (a), then the original sequence converges (a). If the subsequence (or partial sum) of a converging sequence of functions converges (a), then the original sequence converges (a).
The N-th partial sum of the series $\sum_{n=0}^\infty f_n$ is $\sum_{n=0}^{N}f_n$
You can replace (a) with locally uniform convergence, uniform convergence, pointwise convergence, etc. You can replace (a) with locally uniform convergence, uniform convergence, pointwise convergence, etc.
#### UNKNOWN > Corollary from definition of $a^b$ in complex plane
>
We defined $a^b=\{e^{b\log a}\}$ if $b$ is real, then $a^b$ is unique, if $b$ is complex, then $a^b=e^{b\log a}\{e^{2k\pi ik b}\},k\in\mathbb{Z}$. > We defined $a^b=\{e^{b\log a}\}$ if $b$ is real, then $a^b$ is unique, if $b$ is complex, then $a^b=e^{b\log a}\{e^{2k\pi ik b}\},k\in\mathbb{Z}$.
### Power series ### Power series
#### Definition 5.8 #### Definition 5.8
A power series is a series of the form $\sum_{n=0}^{\infty}c_n(\zeta-\zeta_0)^n$. A power series is a series of the form $\sum_{n=0}^{\infty}c_n(z-z_0)^n$.
#### Theorem 5.10 #### Definition 5.9 Region of Convergence
For every power series, there exists a radius of convergence $R$ such that the series converges absolutely and locally uniformly on $B(\zeta_0,R)$. For every power series, there exists a radius of convergence $r$ such that the series converges absolutely and locally uniformly on $B_r(z_0)$.
And it diverges pointwise outside $B(\zeta_0,R)$. And it diverges pointwise outside $B_r(z_0)$.
Proof: Proof:
Without loss of generality, we can assume that $\zeta_0=0$. Without loss of generality, we can assume that $z_0=0$.
Suppose that the power series is $\sum_{n=0}^{\infty}c_n (\zeta)^n$ converges at $\zeta=re^{i\theta}$. Suppose that the power series is $\sum_{n=0}^{\infty}c_n (z)^n$ converges at $z=re^{i\theta}$.
We want to show that the series converges absolutely and uniformly on $\overline{B(0,r)}$ (_closed disk, I prefer to use this notation, although they use $\mathbb{D}$ for the disk (open disk)_). We want to show that the series converges absolutely and uniformly on $\overline{B_r(0)}$ (_closed disk, I prefer to use this notation, although they use $\mathbb{D}$ for the disk (open disk)_).
We know $c_n r^ne^{in\theta}\to 0$ as $n\to\infty$. We know $c_n r^ne^{in\theta}\to 0$ as $n\to\infty$.
So there exists $M\geq|c_n r^ne^{in\theta}|$ for all $n\in\mathbb{N}$. So there exists $M\geq|c_n r^ne^{in\theta}|$ for all $n\in\mathbb{N}$.
So $\forall \zeta\in\overline{B(0,r)}$, $|c_n\zeta^n|\leq |c_n| |\zeta|^n \leq M \left(\frac{|\zeta|}{r}\right)^n$. So $\forall z\in\overline{B_r(0)}$, $|c_nz^n|\leq |c_n| |z|^n \leq M \left(\frac{|z|}{r}\right)^n$.
So $\sum_{n=0}^{\infty}|c_n\zeta^n|$ converges absolutely. So $\sum_{n=0}^{\infty}|c_nz^n|$ converges absolutely.
So the series converges absolutely and uniformly on $\overline{B(0,r)}$. So the series converges absolutely and uniformly on $\overline{B_r(0)}$.
If $|\zeta| > r$, then $|c_n \zeta^n|$ does not tend to zero, and the series diverges. If $|z| > r$, then $|c_n z^n|$ does not tend to zero, and the series diverges.
EOP QED
We denote this $r$ captialized by te radius of convergence
#### Possible Cases for the Convergence of Power Series #### Possible Cases for the Convergence of Power Series
1. **Convergence Only at $\zeta = 0$**: 1. **Convergence Only at $z = 0$**:
- **Proof**: If the power series $\sum_{n=0}^{\infty} c_n (\zeta - \zeta_0)^n$ converges only at $\zeta = 0$, it means that the radius of convergence $R = 0$. This occurs when the terms $c_n (\zeta - \zeta_0)^n$ do not tend to zero for any $\zeta \neq 0$. The series diverges for all $\zeta \neq 0$ because the terms grow without bound. - **Proof**: If the power series $\sum_{n=0}^{\infty} c_n (z - z_0)^n$ converges only at $z = 0$, it means that the radius of convergence $R = 0$. This occurs when the terms $c_n (z - z_0)^n$ do not tend to zero for any $z \neq 0$. The series diverges for all $z \neq 0$ because the terms grow without bound.
2. **Convergence Everywhere**: 2. **Convergence Everywhere**:
- **Proof**: If the power series converges for all $\zeta \in \mathbb{C}$, the radius of convergence $R = \infty$. This implies that the terms $c_n (\zeta - \zeta_0)^n$ tend to zero for all $\zeta$. This can happen if the coefficients $c_n$ decrease rapidly enough, such as in the exponential series. - **Proof**: If the power series converges for all $z \in \mathbb{C}$, the radius of convergence $R = \infty$. This implies that the terms $c_n (z - z_0)^n$ tend to zero for all $z$. This can happen if the coefficients $c_n$ decrease rapidly enough, such as in the exponential series.
3. **Convergence Within a Finite Radius**: 3. **Convergence Within a Finite Radius**:
- **Proof**: For a power series with a finite radius of convergence $R$, the series converges absolutely and uniformly for $|\zeta - \zeta_0| < R$ and diverges for $|\zeta - \zeta_0| > R$. On the boundary $|\zeta - \zeta_0| = R$, the series may converge or diverge depending on the specific series. This is determined by the behavior of the terms on the boundary. - **Proof**: For a power series with a finite radius of convergence $R$, the series converges absolutely and uniformly for $|z - z_0| < R$ and diverges for $|z - z_0| > R$. On the boundary $|z - z_0| = R$, the series may converge or diverge depending on the specific series. This is determined by the behavior of the terms on the boundary.

View File

@@ -10,47 +10,58 @@ Let $f_n: G \to \mathbb{C}$ be a sequence of functions.
Definition: Definition:
Let $\zeta\in G$, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $|f_n(\zeta) - f(\zeta)| < \epsilon$. Let $z\in G$, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $|f_n(z) - f(z)| < \epsilon$.
#### Convergence Uniformly #### Convergence Uniformly
Definition: Definition:
$\forall \epsilon > 0$, $\forall \zeta\in G$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $|f_n(\zeta) - f(\zeta)| < \epsilon$. $\forall \epsilon > 0$, $\forall z\in G$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $|f_n(z) - f(z)| < \epsilon$.
#### Convergence Locally Uniformly #### Convergence Locally Uniformly
Definition: Definition:
$\forall \epsilon > 0$, $\forall \zeta\in G$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $|f_n(\zeta) - f(\zeta)| < \epsilon$. $\forall \epsilon > 0$, $\forall z\in G$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $|f_n(z) - f(z)| < \epsilon$.
#### Convergence Uniformly on Compact Sets #### Convergence Uniformly on Compact Sets
Definition: $\forall C\subset G$ that is compact, $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N, \forall \zeta\in C, |f_n(\zeta) - f(\zeta)| < \epsilon$ Definition: $\forall C\subset G$ that is compact, $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N, \forall z\in C, |f_n(z) - f(z)| < \epsilon$
#### Power Series #### Power Series
Definition: Definition:
$$ $$
\sum_{n=0}^{\infty} c_n (\zeta - \zeta_0)^n \sum_{n=0}^{\infty} c_n (z - z_0)^n
$$ $$
$\zeta_0$ is the center of the power series. $z_0$ is the center of the power series.
#### Theorem of Power Seriess #### Theorem of Power Series
If a power series converges at $\zeta_1$, then it converges absolutely at every point of $\overline{B(0,r)}$ that is strictly inside the disk of convergence. If a power series converges at $z_0$, then it converges absolutely at every point of $\overline{B_r(z_0)}$ that is strictly inside the disk of convergence.
## Continue on Power Series ## Continue on Power Series
### Review on $\limsup$
The $\limsup(a_n)$ $a_n\in\mathbb{R}$ is defined as the sup of subsequence of $(a_n)$ as $n$ approaches infinity.
It has the following properties that is useful for proving the remaining parts for this course.
Suppose $(a_n)_1^\infty$ is a sequence of real numbers
1. If $\rho\in \mathbb{R}$ satisfies that $\rho<\limsup_{n\to\infty}a_n$, then $\{a_n : a_n > \rho\}$ is infinite.
2. If $\rho\in \mathbb{R}$ satisfies that $\rho>\limsup_{n\to\infty}a_n$, then $\{a_n : a_n > \rho\}$ is finite.
### Limits of Power Series ### Limits of Power Series
#### Theorem 5.12 #### Theorem 5.12
Cauchy-Hadamard Theorem: Cauchy-Hadamard Theorem:
The radius of convergence of the power series is given by $\sum_{n=0}^{\infty} a_n (\zeta - \zeta_0)^n$ is given by The radius of convergence of the power series is given by $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ is given by
$$ $$
\frac{1}{R} = \limsup_{n\to\infty} |a_n|^{1/n} \frac{1}{R} = \limsup_{n\to\infty} |a_n|^{1/n}
@@ -74,52 +85,98 @@ Without loss of generality, this also holds for infininum of $s_n$.
Forward direction: Forward direction:
We want to show that the radius of convergence of $\sum_{n=0}^{\infty} a_n (\zeta - \zeta_0)^n$ is greater than or equal to $\frac{1}{\limsup_{n\to\infty} |a_n|^{1/n}}$. We want to show that the radius of convergence of $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ is greater than or equal to $\frac{1}{\limsup_{n\to\infty} |a_n|^{1/n}}$.
Since $\sum_{n=0}^{\infty} 1\zeta^n=\frac{1}{1-\zeta}$ for $|\zeta|<1$. Assume $\limsup_{n\to\infty} |a_n|^{1/n}$ is finite, then $\sum_{n=0}^{\infty} a_n (\zeta - \zeta_0)^n$ converges absolutely at $\zeta_0$. Since $\sum_{n=0}^{\infty} 1z^n=\frac{1}{1-z}$ for $|z|<1$. Assume $\limsup_{n\to\infty} |a_n|^{1/n}$ is finite, then $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges absolutely at $z_0$.
Let $\rho>\limsup_{n\to\infty} |a_n|^{1/n}$, then $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $|a_n|^{1/n}\leq \rho$. Let $\rho>\limsup_{n\to\infty} |a_n|^{1/n}$, then $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $|a_n|^{1/n}\leq \rho$. (By property of $\limsup$)
So $\frac{1}{R}=\limsup_{n\to\infty} |a_n|^{1/n}<\rho$ So $\frac{1}{R}=\limsup_{n\to\infty} |a_n|^{1/n}\leq\rho$
So $R>\frac{1}{\rho}$ So $R\geq\frac{1}{\rho}$
/*TRACK LOST*/
Backward direction: Backward direction:
Suppose $|\zeta|>R$, then $\exists$ number $|\zeta|$ such that $|\zeta|>\frac{1}{\rho}>R$. Suppose $|z|>R$, then $\exists$ number $|z|$ such that $|z|>\frac{1}{\rho}\geq R$.
So $\rho<\limsup_{n\to\infty} |a_n|^{1/n}$ So $\rho<\limsup_{n\to\infty} |a_n|^{1/n}$
This means that $\exists$ infinitely many $n_j$s such that $|a_{n_j}|^{1/n_j}>\rho$ This means that $\exists$ infinitely many $n_j$s such that $|a_{n_j}|^{1/n_j}>\rho$
So $|a_{n_j}\zeta^{n_j}|>\rho^{n_j}|\zeta|^{n_j}$ So $|a_{n_j}z^{n_j}|>\rho^{n_j}|z|^{n_j}$
Series $\sum_{n=1}^{\infty} a_n\zeta^n$ diverges, each individual term is not going to $0$. Series $\sum_{n=1}^{\infty} a_nz^n$ diverges, each individual term is not going to $0$.
So $\sum_{n=0}^{\infty} a_n (\zeta - \zeta_0)^n$ does not converge at $\zeta$ So $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ does not converge at $z$ if $|z|> \frac{1}{\rho}\geq R$
EOP So $R=\frac{1}{\rho}$.
_What if $|\zeta-\zeta_0|=R$?_ QED
For $\sum_{n=0}^{\infty} \zeta^n$, the radius of convergence is $1$. _What if $|z-z_0|=R$?_
For $\sum_{n=0}^{\infty} z^n$, the radius of convergence is $1$.
It diverges eventually on the circle of convergence. It diverges eventually on the circle of convergence.
For $\sum_{n=0}^{\infty} \frac{1}{(n+1)^2}\zeta^n$, the radius of convergence is $1$. For $\sum_{n=0}^{\infty} \frac{1}{(n+1)^2}z^n$, the radius of convergence is $1$.
This converges everywhere on the circle of convergence. This converges everywhere on the circle of convergence.
For $\sum_{n=0}^{\infty} \frac{1}{n+1}\zeta^n$, the radius of convergence is $1$. For $\sum_{n=0}^{\infty} \frac{1}{n+1}z^n$, the radius of convergence is $1$.
This diverges at $\zeta=1$ (harmonic series) and converges at $\zeta=-1$ (alternating harmonic series). This diverges at $z=1$ (harmonic series) and converges at $z=-1$ (alternating harmonic series).
#### Theorem 5.15 #### Theorem 5.15
Suppose $\sum_{n=0}^{\infty} a_n (\zeta - \zeta_0)^n$ has a positive radius of convergence $R$. Define $f(\zeta)=\sum_{n=0}^{\infty} a_n (\zeta - \zeta_0)^n$, then $f$ is holomorphic on $B(0,R)$ and $f'(\zeta)=\sum_{n=1}^{\infty} n a_n (\zeta - \zeta_0)^{n-1}=\sum_{k=0}^{\infty} (k+1)a_{k+1} (\zeta - \zeta_0)^k$. Differentiation of power series
Suppose $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ has a positive radius of convergence $R$. Define $f(z)=\sum_{n=0}^{\infty} a_n (z - z_0)^n$, then $f$ is holomorphic on $B_R(0)$ and $f'(z)=\sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1}=\sum_{k=0}^{\infty} (k+1)a_{k+1} (z - z_0)^k$.
> Here below is the proof on book, which will be covered in next lecture.
Proof: Proof:
/*TRACK LOST*/ Without loss of generality, assume $z_0=0$. Let $R$ be the radius of convergence for the two power series: $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=1}^{\infty} n a_n z ^{n-1}$. The two power series have the same radius of convergence $|R|$.
> For $z,w\in \mathbb{C}, n\in \N$, $$z^n-w^n=(z-w)\sum_{k=0}^{n-1} z^k w^{n-k-1}$$
Let $z_1\in B_R(0)$, $|z_1|<\rho<R$ for some $\rho\in\mathbb{R}$.
$$
\begin{aligned}
\frac{f(z)-f(z_1)}{z-z_1}-g(z_1)&=\frac{1}{z-z_1}\left[\sum_{n=0}^\infty a_n z^n -\sum_{n=0}^\infty a_n z_1^n\right]-\sum_{n=1}^{\infty} n a_n z_1 ^{n-1}\\
&=\sum_{n=1}^{\infty} a_n \left[\frac{z^n-z_1^n}{z-z_1}-nz_1^{n-1}\right]\\
&=\sum_{n=1}^{\infty} a_n \left[\left(\sum_{k=0}^{n-1}z^kz_1^{n-k-1}\right)-nz_1^{n-1}\right]\\
&=\sum_{n=2}^{\infty} a_n \left[\sum_{k=1}^{n-1}z_1^{n-k-1}(z^k-z^k_1)\right]
\end{aligned}
$$
Using the lemma again we get
$$
\begin{aligned}
|z^k-z_1^k|&=|z-z_1|\left|\sum_{j=0}^{k-1}z_jz_1^{k-j-1}\right|\\
&\leq |z-z_1| \sum_{j=0}^{k-1}|z_j||z_1^{k-j-1}|\\
&\leq k\rho^{k-1}|z-z_1|
\end{aligned}
$$
Then,
$$
\begin{aligned}
\left|\frac{f(z)-f(z_1)}{z-z_1}-g(z_1)\right|&=\left|\sum_{n=2}^{\infty} a_n \left[\sum_{k=1}^{n-1}z_1^{n-k-1}(z^k-z^k_1)\right]\right|\\
&\leq \sum_{n=2}^{\infty} |a_n| \left[\sum_{k=1}^{n-1}|z_1|^{n-k-1}|z^k-z_1^k|\right]\\
&\leq \sum_{n=2}^{\infty} |a_n| \left[ \sum_{k=1}^{n-1} \rho^{n-k-1} (k\rho^{k-1}|z-z_1|) \right]\\
&=|z-z_1|\sum_{n=2}^\infty|a_n|\left[\frac{n(n-1)}{2}\rho^{n-2}\right]
\end{aligned}
$$
One can use ratio test to find that $\sum_{n=2}^\infty|a_n|\left[\frac{n(n-1)}{2}\rho^{n-2}\right]$ converges, we denote the sum using $M$
So $\left|\frac{f(z)-f(z_1)}{z-z_1}-g(z_1)\right|\leq M|z-z_1|$ for $|z|<\rho$.
So $\lim_{z\to z_1}\frac{f(z)-f(z_1)}{z-z_1}=g(z_1)$.
QED

View File

@@ -4,7 +4,7 @@
### Power Series ### Power Series
Let $f(\zeta)=\sum_{n=0}^{\infty}a_n(\zeta-\zeta_0)^n$ be a power series. Let $f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$ be a power series.
#### Radius of Convergence #### Radius of Convergence
@@ -18,11 +18,11 @@ $$
### Derivative of Power Series ### Derivative of Power Series
Let $f(\zeta)=\sum_{n=0}^{\infty}a_n(\zeta-\zeta_0)^n$ be a power series. Let $f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$ be a power series.
Let $g(\zeta)=\sum_{n=0}^{\infty}na_n(\zeta-\zeta_0)^{n-1}$ be another power series. Let $g(z)=\sum_{n=0}^{\infty}na_n(z-z_0)^{n-1}$ be another power series.
Then $g$ is holomorphic on $D(\zeta_0,R)$ and $g'(\zeta)=f(\zeta)$ for all $\zeta\in D(\zeta_0,R)$. and $f'(\zeta)=g(\zeta)$. Then $g$ is holomorphic on $D(z_0,R)$ and $g'(z)=f(z)$ for all $z\in D(z_0,R)$. and $f'(z)=g(z)$.
Proof: Proof:
@@ -30,16 +30,16 @@ Note radius of convergence of $g$ is also $R$.
$\limsup_{n\to\infty}|na_n|^{1/(n-1)}=\limsup_{n\to\infty}|a_n|^{1/n}$. $\limsup_{n\to\infty}|na_n|^{1/(n-1)}=\limsup_{n\to\infty}|a_n|^{1/n}$.
Let $\zeta\in D(\zeta_0,R)$. Let $z\in D(z_0,R)$.
let $|\zeta-\zeta_0|<\rho<R$. let $|z-z_0|<\rho<R$.
Without loss of generality, assume $\zeta_0=0$. Let $|w|<\rho$. Without loss of generality, assume $z_0=0$. Let $|w|<\rho$.
$$ $$
\begin{aligned} \begin{aligned}
\frac{f(\zeta)-f(w)}{\zeta-w}-g(\zeta)&=\sum_{n=0}^{\infty}\left[\frac{1}{\zeta-w}\left(a_n(\zeta^n-w^n)\right)-na_n\zeta^{n-1}\right] \\ \frac{f(z)-f(w)}{z-w}-g(z)&=\sum_{n=0}^{\infty}\left[\frac{1}{z-w}\left(a_n(z^n-w^n)\right)-na_nz^{n-1}\right] \\
&=\sum_{n=0}^{\infty}a_n\left[\frac{\zeta^n-w^n}{\zeta-w}-n\zeta^{n-1}\right] &=\sum_{n=0}^{\infty}a_n\left[\frac{z^n-w^n}{z-w}-nz^{n-1}\right]
\end{aligned} \end{aligned}
$$ $$
@@ -47,24 +47,24 @@ Notice that
$$ $$
\begin{aligned} \begin{aligned}
\frac{\zeta^n-w^n}{\zeta-w}&=\sum_{k=0}^{n-1}\zeta^{n-1-k}w^k \\ \frac{z^n-w^n}{z-w}&=\sum_{k=0}^{n-1}z^{n-1-k}w^k \\
&=\zeta^{n-1}+\zeta^{n-2}w+\cdots+w^{n-1} &=z^{n-1}+z^{n-2}w+\cdots+w^{n-1}
\end{aligned} \end{aligned}
$$ $$
Since Since
$$ $$
|w^k-\zeta^k|=\left|(w-\zeta)\left(\sum_{j=0}^{k-1}w^{k-1-j}\zeta^j\right)\right|\leq|w-\zeta|k\rho^{k-1} |w^k-z^k|=\left|(w-z)\left(\sum_{j=0}^{k-1}w^{k-1-j}z^j\right)\right|\leq|w-z|k\rho^{k-1}
$$ $$
$$ $$
\begin{aligned} \begin{aligned}
\frac{\zeta^n-w^n}{\zeta-w}-n\zeta^{n-1}&=(\zeta^{n-1}-\zeta^{n-1})+(\zeta^{n-2}w-\zeta^{n-1})+\cdots+(\zeta w^{n-1}-\zeta^{n-1}) \\ \frac{z^n-w^n}{z-w}-nz^{n-1}&=(z^{n-1}-z^{n-1})+(z^{n-2}w-z^{n-1})+\cdots+(z w^{n-1}-z^{n-1}) \\
&=\zeta^{n-2}(w-\zeta)+\zeta^{n-3}(w^2-\zeta^2)+\cdots+\zeta^0(w^{n-1}-\zeta^{n-1}) \\ &=z^{n-2}(w-z)+z^{n-3}(w^2-z^2)+\cdots+z^0(w^{n-1}-z^{n-1}) \\
&=\sum_{k=0}^{n-1}\zeta^{n-1-k}(w^k-\zeta^k)\\ &=\sum_{k=0}^{n-1}z^{n-1-k}(w^k-z^k)\\
&\leq\sum_{k=0}^{n-1}\zeta^{n-1-k}|w-\zeta|k\rho^{k-1} \\ &\leq\sum_{k=0}^{n-1}z^{n-1-k}|w-z|k\rho^{k-1} \\
&\leq|w-\zeta|\sum_{k=0}^{n-1}k\rho^{k-1} \\ &\leq|w-z|\sum_{k=0}^{n-1}k\rho^{k-1} \\
\end{aligned} \end{aligned}
$$ $$
@@ -72,13 +72,13 @@ Apply absolute value,
$$ $$
\begin{aligned} \begin{aligned}
\left|\frac{f(\zeta)-f(w)}{\zeta-w}-g(\zeta)\right|&\leq\sum_{n=0}^{\infty}|a_n||w-\zeta|\left[\sum_{k=1}^{n-1}\rho^{n-1-k}k\rho^{k-1}\right] \\ \left|\frac{f(z)-f(w)}{z-w}-g(z)\right|&\leq\sum_{n=0}^{\infty}|a_n||w-z|\left[\sum_{k=1}^{n-1}\rho^{n-1-k}k\rho^{k-1}\right] \\
&=|w-\zeta|\sum_{n=0}^{\infty}|a_n|\left[\sum_{k=1}^{n-1}\rho^{n-2}k\right] \\ &=|w-z|\sum_{n=0}^{\infty}|a_n|\left[\sum_{k=1}^{n-1}\rho^{n-2}k\right] \\
&=|w-\zeta|\sum_{n=0}^{\infty}|a_n|\frac{n(n-1)}{2}\rho^{n-2} \\ &=|w-z|\sum_{n=0}^{\infty}|a_n|\frac{n(n-1)}{2}\rho^{n-2} \\
\end{aligned} \end{aligned}
$$ $$
Using Cauchy-Hadamard theorem, the radius of convergence of $\sum_{n=0}^{\infty}\frac{ n(n-1)}{2}|a_n|\zeta^{n-2}$ is at least Using Cauchy-Hadamard theorem, the radius of convergence of $\sum_{n=0}^{\infty}\frac{ n(n-1)}{2}|a_n|z^{n-2}$ is at least
$$ $$
1/\limsup_{n\to\infty}\left[\frac{n(n-1)}{2}|a_n|\right]^{1/(n-1)}=R. 1/\limsup_{n\to\infty}\left[\frac{n(n-1)}{2}|a_n|\right]^{1/(n-1)}=R.
@@ -87,63 +87,65 @@ $$
Therefore, Therefore,
$$ $$
|w-\zeta|\sum_{n=0}^{\infty}|a_n|\frac{n(n-1)}{2}\rho^{n-2} \leq C|w-\zeta| |w-z|\sum_{n=0}^{\infty}|a_n|\frac{n(n-1)}{2}\rho^{n-2} \leq C|w-z|
$$ $$
where $C$ is dependent on $\rho$. where $C$ is dependent on $\rho$.
So $lim_{w\to\zeta}\left|\frac{f(\zeta)-f(w)}{\zeta-w}-g(\zeta)\right|=0$. as desired. So $\lim_{w\to z}\left|\frac{f(z)-f(w)}{z-w}-g(z)\right|=0$. as desired.
QED
#### Corollary of power series #### Corollary of power series
If $f(\zeta)=\sum_{n=0}^{\infty}a_n(\zeta-\zeta_0)^n$ in $D(\zeta_0,R)$, then $a_0=f(\zeta_0), a_1=f'(\zeta_0)/1!, a_2=f''(\zeta_0)/2!$, etc. If $f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$ in $D(z_0,R)$, then $a_0=f(z_0), a_1=f'(z_0)/1!, a_2=f''(z_0)/2!$, etc.
#### Definition (Analytic) #### Definition (Analytic)
A function $h$ on an open set $U\subset\mathbb{C}$ is called analytic if for every $\zeta\in U$, $\exists \epsilon>0$ such that on $D(\zeta,\epsilon)\subset U$, $h$ can be represented as a power series $\sum_{n=0}^{\infty}a_n(\zeta-\zeta_0)^n$. A function $h$ on an open set $U\subset\mathbb{C}$ is called analytic if for every $z\in U$, $\exists \epsilon>0$ such that on $D(z,\epsilon)\subset U$, $h$ can be represented as a power series $\sum_{n=0}^{\infty}a_n(z-z_0)^n$.
#### Theorem (Analytic implies holomorphic) #### Theorem (Analytic implies holomorphic)
If $f$ is analytic on $U$, then $f$ is holomorphic on $U$. If $f$ is analytic on $U$, then $f$ is holomorphic on $U$.
$\sum_{n=0}^{\infty}\frac{1}{n!}f^{(n)}(\zeta)^n$ $\sum_{n=0}^{\infty}\frac{1}{n!}f^{(n)}(z)^n$
Radius of convergence is $\infty$. Radius of convergence is $\infty$.
So $f(0)=1=ce^0=c$ So $f(0)=1=ce^0=c$
$\sum_{n=0}^{\infty}\frac{1}{n}\zeta^n$ $\sum_{n=0}^{\infty}\frac{1}{n}z^n$
Radius of convergence is $1$. Radius of convergence is $1$.
$f'=\sum_{n=1}^{\infty}\zeta^{n-1}=\frac{1}{1-\zeta}$ (Geometric series) $f'=\sum_{n=1}^{\infty}z^{n-1}=\frac{1}{1-z}$ (Geometric series)
So $g(\zeta)=c+\log(\frac{1}{1-\zeta})=c+2\pi k i=\log(\frac{1}{1-\zeta})+2\pi k i$ So $g(z)=c+\log(\frac{1}{1-z})=c+2\pi k i=\log(\frac{1}{1-z})+2\pi k i$
#### Cauchy Product of power series #### Cauchy Product of power series
Let $f(\zeta)=\sum_{n=0}^{\infty}a_n\zeta^n$ and $g(\zeta)=\sum_{n=0}^{\infty}b_n\zeta^n$ be two power series. Let $f(z)=\sum_{n=0}^{\infty}a_nz^n$ and $g(z)=\sum_{n=0}^{\infty}b_nz^n$ be two power series.
Then $f(\zeta)g(\zeta)=\sum_{n=0}^{\infty}=\sum_{n=0}^{\infty}c_n\zeta^n=\sum_{n=0}^{\infty}\sum_{k=0}^{n}a_kb_{n-k}\zeta^n$ Then $f(z)g(z)=\sum_{n=0}^{\infty}=\sum_{n=0}^{\infty}c_nz^n=\sum_{n=0}^{\infty}\sum_{k=0}^{n}a_kb_{n-k}z^n$
#### Theorem of radius of convergence of Cauchy product #### Theorem of radius of convergence of Cauchy product
Let $f(\zeta)=\sum_{n=0}^{\infty}a_n\zeta^n$ and $g(\zeta)=\sum_{n=0}^{\infty}b_n\zeta^n$ be two power series. Let $f(z)=\sum_{n=0}^{\infty}a_nz^n$ and $g(z)=\sum_{n=0}^{\infty}b_nz^n$ be two power series.
Then the radius of convergence of $f(\zeta)g(\zeta)$ is at least $\min(R_f,R_g)$. Then the radius of convergence of $f(z)g(z)$ is at least $\min(R_f,R_g)$.
Without loss of generality, assume $\zeta_0=0$. Without loss of generality, assume $z_0=0$.
$$ $$
\begin{aligned} \begin{aligned}
\left(\sum_{j=0}^{N}a_j\zeta^j\right)\left(\sum_{k=0}^{N}b_k\zeta^k\right)-\sum_{l=0}^{N}c_l\zeta^l&=\sum_{j=0}^{N}\sum_{k=N-j}^{N}a_jb_k\zeta^{j+k}\\ \left(\sum_{j=0}^{N}a_jz^j\right)\left(\sum_{k=0}^{N}b_kz^k\right)-\sum_{l=0}^{N}c_lz^l&=\sum_{j=0}^{N}\sum_{k=N-j}^{N}a_jb_kz^{j+k}\\
&\leq\sum_{N/2\leq\max(j,k)\leq N}|a_j||b_k||\zeta^{j+k}|\\ &\leq\sum_{N/2\leq\max(j,k)\leq N}|a_j||b_k||z^{j+k}|\\
&\leq\left(\sum_{j=N/2}^{N}|a_j||\zeta^j|\right)\left(\sum_{k=0}^{\infty}|b_k||\zeta^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||\zeta^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||\zeta^k|\right)\\ &\leq\left(\sum_{j=N/2}^{N}|a_j||z^j|\right)\left(\sum_{k=0}^{\infty}|b_k||z^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||z^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||z^k|\right)\\
\end{aligned} \end{aligned}
$$ $$
Since $\sum_{j=0}^{\infty}|a_j||\zeta^j|$ and $\sum_{k=0}^{\infty}|b_k||\zeta^k|$ are convergent, and $\sum_{j=N/2}^{N}|a_j||\zeta^j|$ and $\sum_{k=N/2}^{\infty}|b_k||\zeta^k|$ converges to zero. Since $\sum_{j=0}^{\infty}|a_j||z^j|$ and $\sum_{k=0}^{\infty}|b_k||z^k|$ are convergent, and $\sum_{j=N/2}^{N}|a_j||z^j|$ and $\sum_{k=N/2}^{\infty}|b_k||z^k|$ converges to zero.
So $\left|\left(\sum_{j=0}^{N}a_j\zeta^j\right)\left(\sum_{k=0}^{N}b_k\zeta^k\right)-\sum_{l=0}^{N}c_l\zeta^l\right|\leq\left(\sum_{j=N/2}^{N}|a_j||\zeta^j|\right)\left(\sum_{k=0}^{\infty}|b_k||\zeta^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||\zeta^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||\zeta^k|\right)\to 0$ as $N\to\infty$. So $\left|\left(\sum_{j=0}^{N}a_jz^j\right)\left(\sum_{k=0}^{N}b_kz^k\right)-\sum_{l=0}^{N}c_lz^l\right|\leq\left(\sum_{j=N/2}^{N}|a_j||z^j|\right)\left(\sum_{k=0}^{\infty}|b_k||z^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||z^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||z^k|\right)\to 0$ as $N\to\infty$.
So $\sum_{n=0}^{\infty}c_n\zeta^n$ converges to $f(\zeta)g(\zeta)$ on $D(0,R_fR_g)$. So $\sum_{n=0}^{\infty}c_nz^n$ converges to $f(z)g(z)$ on $D(0,R_fR_g)$.

View File

@@ -15,4 +15,5 @@ export default {
Math416_L10: "Complex Variables (Lecture 10)", Math416_L10: "Complex Variables (Lecture 10)",
Math416_L11: "Complex Variables (Lecture 11)", Math416_L11: "Complex Variables (Lecture 11)",
Math416_L12: "Complex Variables (Lecture 12)", Math416_L12: "Complex Variables (Lecture 12)",
Math416_L13: "Complex Variables (Lecture 13)",
} }

View File

@@ -1,3 +1,15 @@
# Math 416 # Math 416
Complex variables. Complex variables. This is a course that explores the theory and applications of complex analysis as extension of Real analysis.
The course is taught by Professor.
John E. McCarthy <mccarthy@math.wustl.edu>
Some interesting fact is that he cover the lecture terribly quick. At least for me. I need to preview and review the lecture after the course ended. The only thing that I can take granted of is that many theorem in real analysis still holds in the complex. By elegant definition designing, we build a wonderful math with complex variables and extended theorems, which is more helpful when solving questions that cannot be solved in real numbers.
McCarthy like to write $\zeta$ for $z$ and his writing for $\zeta$ is almost identical with $z$, I decided to use the traditional notation system I've learned to avoid confusion in my notes.
I will use $B_r(z_0)$ to denote a disk in $\mathbb{C}$ such that $B_r(z_0) = \{ z \in \mathbb{C} : |z - z_0| < r \}$
I will use $z$ to replace the strange notation of $\zeta$. If that makes sense.

View File

@@ -48,7 +48,7 @@ Since $r'=b(q-q')+r \geq b(q-q') \geq b$, which contradicts that $r' < b$.
Therefore, $q=q'$ and $r=r'$. Therefore, $q=q'$ and $r=r'$.
EOP QED
#### Definition: Divisibility #### Definition: Divisibility
@@ -74,7 +74,7 @@ Some proof examples:
(2) Since $a \mid b$ and $b \mid c$, there exist $k, l \in \mathbb{Z}$ such that $b = ak$ and $c = bl$. Then $c = bl = (ak)l = a(kl)$, so $a \mid c$. (2) Since $a \mid b$ and $b \mid c$, there exist $k, l \in \mathbb{Z}$ such that $b = ak$ and $c = bl$. Then $c = bl = (ak)l = a(kl)$, so $a \mid c$.
EOP QED
(3) If $a \mid b$ and $b \mid a$, then there exist $k, l \in \mathbb{Z}$ such that $b = ak$ and $a = bl$. Then $a = bl = (ak)l = a(kl)$, so $a(1-kl) = 0$. (3) If $a \mid b$ and $b \mid a$, then there exist $k, l \in \mathbb{Z}$ such that $b = ak$ and $a = bl$. Then $a = bl = (ak)l = a(kl)$, so $a(1-kl) = 0$.
@@ -82,7 +82,7 @@ Case 1: $a=0$, then $b=0$, so $a=b$.
Case 2: $a \neq 0$, then $1-kl=0$, so $kl=1$. Since $k, l \in \mathbb{Z}$, $k=l=\pm 1$, so $a = \pm b$. Case 2: $a \neq 0$, then $1-kl=0$, so $kl=1$. Since $k, l \in \mathbb{Z}$, $k=l=\pm 1$, so $a = \pm b$.
EOP QED
#### Definition: Divisor #### Definition: Divisor
@@ -142,7 +142,7 @@ By property of divisibility (4), $d \mid bk + (a-bk) = a$.
Therefore, $d \in D(a) \cap D(b)$. Therefore, $d \in D(a) \cap D(b)$.
EOP QED
This theorem gives rise to the Euclidean algorithm which is a efficient way to compute the greatest common divisor of two integers. $2\Theta(\log n)+1=O(\log n)$ ([Proof in CSE 442T Lecture 7](https://notenextra.trance-0.com/CSE442T/CSE442T_L7#euclidean-algorithm)). This theorem gives rise to the Euclidean algorithm which is a efficient way to compute the greatest common divisor of two integers. $2\Theta(\log n)+1=O(\log n)$ ([Proof in CSE 442T Lecture 7](https://notenextra.trance-0.com/CSE442T/CSE442T_L7#euclidean-algorithm)).

View File

@@ -10,7 +10,7 @@ So here it is. A lite server for you to read my notes.
<p style="color: red; font-weight: bold">It's because I'm too easy to fall asleep if I stop doing something on my hand when my mind is wandering.</p> <p style="color: red; font-weight: bold">It's because I'm too easy to fall asleep if I stop doing something on my hand when my mind is wandering.</p>
So I'm not responsible for any wrong notes or facts recorded in my notes since I rarely check them and use them as a reference. I'd like to read the book which have been proof read by many people. So I'm not responsible for any wrong notes or facts recorded in my notes since I rarely check them and use them as a reference. I'd like to read the book which have been proof read by many pQEDle.
If you find any mistakes, please let me know by submitting an issue in the [GitHub repository](https://github.com/Trance-0/NoteNextra). Or click the `Edit this page` button at the side of the page to fix it yourself with appropriate push request. I really appreciate and willing to accept any valuable contribution in this project. If you find any mistakes, please let me know by submitting an issue in the [GitHub repository](https://github.com/Trance-0/NoteNextra). Or click the `Edit this page` button at the side of the page to fix it yourself with appropriate push request. I really appreciate and willing to accept any valuable contribution in this project.