This commit is contained in:
Zheyuan Wu
2025-01-14 16:45:26 -06:00
parent d201b732b0
commit 2853168aae
9 changed files with 6624 additions and 12 deletions

View File

@@ -0,0 +1,59 @@
# Lecture 1
## Introducing the syllabus
See the syllabus on Canvas.
## Motivational introduction for computer vision
Computer vision is the study of manipulating images.
Automatic understanding of images and videos
1. vision for measurement (measurement, segmentation)
2. vision for perception, interpretation (labeling)
3. search and organization (retrieval, image or video archives)
### What is image
A 2d array of numbers.
### Vision is hard
connection to graphics.
computer vision need to generate the model from the image.
#### Are A and B the same color?
It depends on the context what you mean by "the same".
todo
#### Chair detector example.
double for loops.
#### Our visual system is not perfect.
Some optical illusion images.
todo, embed images here.
### Ridiculously brief history of computer vision
1960s: interpretation of synthetic worlds
1970s: some progress on interpreting selected images
1980s: ANNs come and go; shift toward geometry and increased mathematical rigor
1990s: face recognition; statistical analysis in vogue
2000s: becoming useful; significant use of machine learning; large annotated datasets available; video processing starts.
2010s: Deep learning with ConvNets
2020s: String synthesis; continued improvement across tasks, vision-language models.
## How computer vision is used now
### OCR, Optical Character Recognition
Technology to convert scanned docs to text.

View File

@@ -3,13 +3,7 @@ export default {
"---":{
type: 'separator'
},
Math401_L1: {
display: 'hidden'
},
Math401_L2: {
display: 'hidden'
},
Math401_L3: {
CSE559A_L1: {
display: 'hidden'
},
}

4
pages/CSE559A/index.md Normal file
View File

@@ -0,0 +1,4 @@
# CSE 559A: Computer Vision
## Course Description

View File

@@ -1,4 +0,0 @@
# Math 401: Honors Seminar in Mathematics
## Course Description

View File

@@ -0,0 +1,160 @@
# Lecture 1
## Toy example (RSA encryption)
$Enc$
1. Choose a letter, count to number of letters in the alphabet.
2. Calculate $s^7$, then divide by 33, take the remainder.
3. Send the remainder.
$Dec: s = r^3 \mod 33$
To build up such system.
Step 1: Understanding the arithmetic of remainders.
## Part 1: Divisibility and prime numbers
### Divisibility and division algorithm
Let $a, b\in \mathbb{Z}$, with $b>0$. There are unique integers, $q$ (quotient) and $r$ (remainder), such that $a = bq + r$ and $0 \leq r < b$.
Example: $31=7\times 4 + 3$
Proof:
The quotient and remainder are unique.
(1) Existence:
Let $S = \{a - bk \mid k \in \mathbb{Z}, a - bk \geq 0\}$. Choose $r$ to be the smallest non-negative element of $S$. This means $r = a - bq$ for some $q \in \mathbb{Z}$. i.e. $a=bq+r$.
> New notion: $\triangle FSOC$ means For the sake of contradiction.
Notice that $r \geq 0$, by contradiction, suppose $r \geq b$, then $r-b \geq 0$ and $r-b \in S$, but $r-b < r$, which contradicts the minimality of $r$.
Therefore, $r \geq 0$ and $r < b$.
Example: $a=31, b=7$, $S = \{31-7k \mid k \in \mathbb{Z}, 31-7k \geq 0\}=\{\cdots, -32, -25, -18, -11, -4, 3, 10, 17, 24, 31, \cdots\}$, $r=3$.
So We choose $q=4$ and $r=3$.
(2) Uniqueness:
Suppose we have two pairs $(q, r)$ and $(q', r')$ such that $a = bq + r = bq' + r'$ Suppose $q \neq q'$, without loss of generality, suppose $q > q'$, $q-q' \geq 1$. Then $b(q-q') = r'-r$.
Since $r'=b(q-q')+r \geq b(q-q') \geq b$, which contradicts that $r' < b$.
Therefore, $q=q'$ and $r=r'$.
EOP
#### Definition: Divisibility
Let $a, b \in \mathbb{Z}$, we say $b$ divides $a$ and write $b \mid a$ if there exists $k\in \mathbb{Z}$ such that $a = bk$.
Example: $3 \mid 12$ because $12 = 3 \times 4$.
#### Properties of divisibility
Let $a, b, c \in \mathbb{Z}$.
(1) $b \mid a \iff r=0$ in the division algorithm.
(2) If $a \mid b$ and $b \mid c$, then $a \mid c$.
(3) If $a \mid b$ and $b \mid a$, then $a = \pm b$.
(4) If $a \mid b$ and $a \mid c$, then $a \mid bx + cy$ for all $x, y \in \mathbb{Z}$. (We call such $bx+cy$ a linear combination of $b$ and $c$.)
(5) If $c\neq 0$ and $a \mid b \iff ac \mid bc$.
Some proof examples:
(2) Since $a \mid b$ and $b \mid c$, there exist $k, l \in \mathbb{Z}$ such that $b = ak$ and $c = bl$. Then $c = bl = (ak)l = a(kl)$, so $a \mid c$.
EOP
(3) If $a \mid b$ and $b \mid a$, then there exist $k, l \in \mathbb{Z}$ such that $b = ak$ and $a = bl$. Then $a = bl = (ak)l = a(kl)$, so $a(1-kl) = 0$.
Case 1: $a=0$, then $b=0$, so $a=b$.
Case 2: $a \neq 0$, then $1-kl=0$, so $kl=1$. Since $k, l \in \mathbb{Z}$, $k=l=\pm 1$, so $a = \pm b$.
EOP
#### Definition: Divisor
Let $a\in \mathbb{Z}$, we define $D(a) = \{d\in \mathbb{Z} \mid d \mid a\}$.
**Note that $D(0) = \mathbb{Z}$.**
Example: $D(12) = \{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\}$.
#### Definition: Greatest common divisor
Let $a, b \in \mathbb{Z}$, where $a,b$ not both zero, we define the greatest common divisor of $a$ and $b$ to be the largest element in $D(a) \cap D(b)$. It is denoted by $(a,b)$.
> Terrible, I really hate this notation. But professor said it's unlikely to be confused with the interval $(a,b)$ since they don't show up in the same context usually.
Example:
$(12, 18) = 6$.
**Note that $(0,0)$ is not defined. (there is no largest element in $D(0) \cap D(0)$.)**
but it is okay that one of $a, b$ is zero. For example, $(0, 18) = 18$.
$(n,n) = |n|$ for all $n \in \mathbb{Z}$.
In general, if $(a,b)=0$ we say $a$ and $b$ are relatively prime, or coprime.
$\forall a, b \in \mathbb{Z}$, $(a,b) \geq 1$.
#### Theorem for calculating gcd
Let $a, b \in \mathbb{Z}$, with $b\neq 0$, then for any $k\in \mathbb{Z}$, $(a,b) = (b,a-bk)$.
Example: $(12, 18) = (18, 12-18) = (18, -6) = 6$.
$(938,210)=(210,938-210\times 4)=(210,938-840)=(210,98)$.
Proof:
We will prove that $D(a) \cap D(b) = D(b) \cap D(a-bk)$.
(1) $D(a) \cap D(b) \subseteq D(b) \cap D(a-bk)$:
Let $d \in D(a) \cap D(b)$, then $d \mid a$ and $d \mid b$.
By property of divisibility (4), If $a\mid b$ and $b\mid c$, then for all $x,y\in \mathbb{Z}$, $a\mid bx+cy$.
So $d\mid a+b\cdot (-k) = a-bk$.
Therefore, $d \in D(b) \cap D(a-bk)$.
(2) $D(b) \cap D(a-bk) \subseteq D(a) \cap D(b)$:
Let $d \in D(b) \cap D(a-bk)$, then $d \mid b$ and $d \mid a-bk$.
By property of divisibility (4), $d \mid bk + (a-bk) = a$.
Therefore, $d \in D(a) \cap D(b)$.
EOP
This theorem gives rise to the Euclidean algorithm which is a efficient way to compute the greatest common divisor of two integers. $2\Theta(\log n)+1=O(\log n)$ ([Proof in CSE 442T Lecture 7](https://notenextra.trance-0.com/CSE442T/CSE442T_L7#euclidean-algorithm)).
### Euclidean algorithm
We will skip this part, it's already the third time we see this algorithm in wustl.
#### Theorem: Euclidean algorithm returns correct gcd
Let $a>b>0$, be integers. Using the Euclidean algorithm, we can find $b>r_0>r_1>r_2>\cdots>r_n$ such that $a=bq_0+r_0, b=r_0q_1+r_1, \cdots, r_{n-1}=r_nq_{n+1}+r_{n+1}, r_n=0$. Then $(a,b)=r_n$.
Proof:
(a) This process terminates. $b>r_0>r_1>r_2>\cdots>r_n$ is a strictly decreasing sequence of positive integers, so it must terminate.

7
pages/Math4351/_meta.js Normal file
View File

@@ -0,0 +1,7 @@
export default {
index: "Course Description",
"---":{
type: 'separator'
},
Math4351_L1: "Introduction to Number Theory and Cryptography (Lecture 1)",
}

7
pages/Math4351/index.md Normal file
View File

@@ -0,0 +1,7 @@
# Math 4351
Number theory and cryptography.
No textbook required.

View File

@@ -29,13 +29,19 @@ export default {
Math4121: {
type: 'page',
},
Math4351: {
type: 'page',
},
CSE332S: {
type: 'page',
},
CSE347: {
type: 'page',
},
CSE442T: {
type: 'page',
},
CSE347: {
CSE559A: {
type: 'page',
},
about: {