build
This commit is contained in:
59
pages/CSE559A/CSE559A_L1.md
Normal file
59
pages/CSE559A/CSE559A_L1.md
Normal file
@@ -0,0 +1,59 @@
|
||||
# Lecture 1
|
||||
|
||||
## Introducing the syllabus
|
||||
|
||||
See the syllabus on Canvas.
|
||||
|
||||
## Motivational introduction for computer vision
|
||||
|
||||
Computer vision is the study of manipulating images.
|
||||
|
||||
Automatic understanding of images and videos
|
||||
|
||||
1. vision for measurement (measurement, segmentation)
|
||||
2. vision for perception, interpretation (labeling)
|
||||
3. search and organization (retrieval, image or video archives)
|
||||
|
||||
### What is image
|
||||
|
||||
A 2d array of numbers.
|
||||
|
||||
### Vision is hard
|
||||
|
||||
connection to graphics.
|
||||
|
||||
computer vision need to generate the model from the image.
|
||||
|
||||
#### Are A and B the same color?
|
||||
|
||||
It depends on the context what you mean by "the same".
|
||||
|
||||
todo
|
||||
|
||||
#### Chair detector example.
|
||||
|
||||
double for loops.
|
||||
|
||||
#### Our visual system is not perfect.
|
||||
|
||||
Some optical illusion images.
|
||||
|
||||
todo, embed images here.
|
||||
|
||||
### Ridiculously brief history of computer vision
|
||||
|
||||
1960s: interpretation of synthetic worlds
|
||||
1970s: some progress on interpreting selected images
|
||||
1980s: ANNs come and go; shift toward geometry and increased mathematical rigor
|
||||
1990s: face recognition; statistical analysis in vogue
|
||||
2000s: becoming useful; significant use of machine learning; large annotated datasets available; video processing starts.
|
||||
2010s: Deep learning with ConvNets
|
||||
2020s: String synthesis; continued improvement across tasks, vision-language models.
|
||||
|
||||
## How computer vision is used now
|
||||
|
||||
### OCR, Optical Character Recognition
|
||||
|
||||
Technology to convert scanned docs to text.
|
||||
|
||||
|
||||
@@ -3,13 +3,7 @@ export default {
|
||||
"---":{
|
||||
type: 'separator'
|
||||
},
|
||||
Math401_L1: {
|
||||
display: 'hidden'
|
||||
},
|
||||
Math401_L2: {
|
||||
display: 'hidden'
|
||||
},
|
||||
Math401_L3: {
|
||||
CSE559A_L1: {
|
||||
display: 'hidden'
|
||||
},
|
||||
}
|
||||
4
pages/CSE559A/index.md
Normal file
4
pages/CSE559A/index.md
Normal file
@@ -0,0 +1,4 @@
|
||||
# CSE 559A: Computer Vision
|
||||
|
||||
## Course Description
|
||||
|
||||
@@ -1,4 +0,0 @@
|
||||
# Math 401: Honors Seminar in Mathematics
|
||||
|
||||
## Course Description
|
||||
|
||||
160
pages/Math4351/Math4351_L1.md
Normal file
160
pages/Math4351/Math4351_L1.md
Normal file
@@ -0,0 +1,160 @@
|
||||
# Lecture 1
|
||||
|
||||
## Toy example (RSA encryption)
|
||||
|
||||
$Enc$
|
||||
|
||||
1. Choose a letter, count to number of letters in the alphabet.
|
||||
2. Calculate $s^7$, then divide by 33, take the remainder.
|
||||
3. Send the remainder.
|
||||
|
||||
$Dec: s = r^3 \mod 33$
|
||||
|
||||
To build up such system.
|
||||
|
||||
Step 1: Understanding the arithmetic of remainders.
|
||||
|
||||
## Part 1: Divisibility and prime numbers
|
||||
|
||||
### Divisibility and division algorithm
|
||||
|
||||
Let $a, b\in \mathbb{Z}$, with $b>0$. There are unique integers, $q$ (quotient) and $r$ (remainder), such that $a = bq + r$ and $0 \leq r < b$.
|
||||
|
||||
Example: $31=7\times 4 + 3$
|
||||
|
||||
Proof:
|
||||
|
||||
The quotient and remainder are unique.
|
||||
|
||||
(1) Existence:
|
||||
|
||||
Let $S = \{a - bk \mid k \in \mathbb{Z}, a - bk \geq 0\}$. Choose $r$ to be the smallest non-negative element of $S$. This means $r = a - bq$ for some $q \in \mathbb{Z}$. i.e. $a=bq+r$.
|
||||
|
||||
> New notion: $\triangle FSOC$ means For the sake of contradiction.
|
||||
|
||||
Notice that $r \geq 0$, by contradiction, suppose $r \geq b$, then $r-b \geq 0$ and $r-b \in S$, but $r-b < r$, which contradicts the minimality of $r$.
|
||||
|
||||
Therefore, $r \geq 0$ and $r < b$.
|
||||
|
||||
Example: $a=31, b=7$, $S = \{31-7k \mid k \in \mathbb{Z}, 31-7k \geq 0\}=\{\cdots, -32, -25, -18, -11, -4, 3, 10, 17, 24, 31, \cdots\}$, $r=3$.
|
||||
|
||||
So We choose $q=4$ and $r=3$.
|
||||
|
||||
(2) Uniqueness:
|
||||
|
||||
Suppose we have two pairs $(q, r)$ and $(q', r')$ such that $a = bq + r = bq' + r'$ Suppose $q \neq q'$, without loss of generality, suppose $q > q'$, $q-q' \geq 1$. Then $b(q-q') = r'-r$.
|
||||
|
||||
Since $r'=b(q-q')+r \geq b(q-q') \geq b$, which contradicts that $r' < b$.
|
||||
|
||||
Therefore, $q=q'$ and $r=r'$.
|
||||
|
||||
EOP
|
||||
|
||||
#### Definition: Divisibility
|
||||
|
||||
Let $a, b \in \mathbb{Z}$, we say $b$ divides $a$ and write $b \mid a$ if there exists $k\in \mathbb{Z}$ such that $a = bk$.
|
||||
|
||||
Example: $3 \mid 12$ because $12 = 3 \times 4$.
|
||||
|
||||
#### Properties of divisibility
|
||||
|
||||
Let $a, b, c \in \mathbb{Z}$.
|
||||
|
||||
(1) $b \mid a \iff r=0$ in the division algorithm.
|
||||
|
||||
(2) If $a \mid b$ and $b \mid c$, then $a \mid c$.
|
||||
|
||||
(3) If $a \mid b$ and $b \mid a$, then $a = \pm b$.
|
||||
|
||||
(4) If $a \mid b$ and $a \mid c$, then $a \mid bx + cy$ for all $x, y \in \mathbb{Z}$. (We call such $bx+cy$ a linear combination of $b$ and $c$.)
|
||||
|
||||
(5) If $c\neq 0$ and $a \mid b \iff ac \mid bc$.
|
||||
|
||||
Some proof examples:
|
||||
|
||||
(2) Since $a \mid b$ and $b \mid c$, there exist $k, l \in \mathbb{Z}$ such that $b = ak$ and $c = bl$. Then $c = bl = (ak)l = a(kl)$, so $a \mid c$.
|
||||
|
||||
EOP
|
||||
|
||||
(3) If $a \mid b$ and $b \mid a$, then there exist $k, l \in \mathbb{Z}$ such that $b = ak$ and $a = bl$. Then $a = bl = (ak)l = a(kl)$, so $a(1-kl) = 0$.
|
||||
|
||||
Case 1: $a=0$, then $b=0$, so $a=b$.
|
||||
|
||||
Case 2: $a \neq 0$, then $1-kl=0$, so $kl=1$. Since $k, l \in \mathbb{Z}$, $k=l=\pm 1$, so $a = \pm b$.
|
||||
|
||||
EOP
|
||||
|
||||
#### Definition: Divisor
|
||||
|
||||
Let $a\in \mathbb{Z}$, we define $D(a) = \{d\in \mathbb{Z} \mid d \mid a\}$.
|
||||
|
||||
**Note that $D(0) = \mathbb{Z}$.**
|
||||
|
||||
Example: $D(12) = \{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\}$.
|
||||
|
||||
#### Definition: Greatest common divisor
|
||||
|
||||
Let $a, b \in \mathbb{Z}$, where $a,b$ not both zero, we define the greatest common divisor of $a$ and $b$ to be the largest element in $D(a) \cap D(b)$. It is denoted by $(a,b)$.
|
||||
|
||||
> Terrible, I really hate this notation. But professor said it's unlikely to be confused with the interval $(a,b)$ since they don't show up in the same context usually.
|
||||
|
||||
Example:
|
||||
|
||||
$(12, 18) = 6$.
|
||||
|
||||
**Note that $(0,0)$ is not defined. (there is no largest element in $D(0) \cap D(0)$.)**
|
||||
|
||||
but it is okay that one of $a, b$ is zero. For example, $(0, 18) = 18$.
|
||||
|
||||
$(n,n) = |n|$ for all $n \in \mathbb{Z}$.
|
||||
|
||||
In general, if $(a,b)=0$ we say $a$ and $b$ are relatively prime, or coprime.
|
||||
|
||||
$\forall a, b \in \mathbb{Z}$, $(a,b) \geq 1$.
|
||||
|
||||
#### Theorem for calculating gcd
|
||||
|
||||
Let $a, b \in \mathbb{Z}$, with $b\neq 0$, then for any $k\in \mathbb{Z}$, $(a,b) = (b,a-bk)$.
|
||||
|
||||
Example: $(12, 18) = (18, 12-18) = (18, -6) = 6$.
|
||||
|
||||
$(938,210)=(210,938-210\times 4)=(210,938-840)=(210,98)$.
|
||||
|
||||
Proof:
|
||||
|
||||
We will prove that $D(a) \cap D(b) = D(b) \cap D(a-bk)$.
|
||||
|
||||
(1) $D(a) \cap D(b) \subseteq D(b) \cap D(a-bk)$:
|
||||
|
||||
Let $d \in D(a) \cap D(b)$, then $d \mid a$ and $d \mid b$.
|
||||
|
||||
By property of divisibility (4), If $a\mid b$ and $b\mid c$, then for all $x,y\in \mathbb{Z}$, $a\mid bx+cy$.
|
||||
|
||||
So $d\mid a+b\cdot (-k) = a-bk$.
|
||||
|
||||
Therefore, $d \in D(b) \cap D(a-bk)$.
|
||||
|
||||
(2) $D(b) \cap D(a-bk) \subseteq D(a) \cap D(b)$:
|
||||
|
||||
Let $d \in D(b) \cap D(a-bk)$, then $d \mid b$ and $d \mid a-bk$.
|
||||
|
||||
By property of divisibility (4), $d \mid bk + (a-bk) = a$.
|
||||
|
||||
Therefore, $d \in D(a) \cap D(b)$.
|
||||
|
||||
EOP
|
||||
|
||||
This theorem gives rise to the Euclidean algorithm which is a efficient way to compute the greatest common divisor of two integers. $2\Theta(\log n)+1=O(\log n)$ ([Proof in CSE 442T Lecture 7](https://notenextra.trance-0.com/CSE442T/CSE442T_L7#euclidean-algorithm)).
|
||||
|
||||
### Euclidean algorithm
|
||||
|
||||
We will skip this part, it's already the third time we see this algorithm in wustl.
|
||||
|
||||
#### Theorem: Euclidean algorithm returns correct gcd
|
||||
|
||||
Let $a>b>0$, be integers. Using the Euclidean algorithm, we can find $b>r_0>r_1>r_2>\cdots>r_n$ such that $a=bq_0+r_0, b=r_0q_1+r_1, \cdots, r_{n-1}=r_nq_{n+1}+r_{n+1}, r_n=0$. Then $(a,b)=r_n$.
|
||||
|
||||
Proof:
|
||||
|
||||
(a) This process terminates. $b>r_0>r_1>r_2>\cdots>r_n$ is a strictly decreasing sequence of positive integers, so it must terminate.
|
||||
|
||||
7
pages/Math4351/_meta.js
Normal file
7
pages/Math4351/_meta.js
Normal file
@@ -0,0 +1,7 @@
|
||||
export default {
|
||||
index: "Course Description",
|
||||
"---":{
|
||||
type: 'separator'
|
||||
},
|
||||
Math4351_L1: "Introduction to Number Theory and Cryptography (Lecture 1)",
|
||||
}
|
||||
7
pages/Math4351/index.md
Normal file
7
pages/Math4351/index.md
Normal file
@@ -0,0 +1,7 @@
|
||||
# Math 4351
|
||||
|
||||
Number theory and cryptography.
|
||||
|
||||
No textbook required.
|
||||
|
||||
|
||||
@@ -29,13 +29,19 @@ export default {
|
||||
Math4121: {
|
||||
type: 'page',
|
||||
},
|
||||
Math4351: {
|
||||
type: 'page',
|
||||
},
|
||||
CSE332S: {
|
||||
type: 'page',
|
||||
},
|
||||
CSE347: {
|
||||
type: 'page',
|
||||
},
|
||||
CSE442T: {
|
||||
type: 'page',
|
||||
},
|
||||
CSE347: {
|
||||
CSE559A: {
|
||||
type: 'page',
|
||||
},
|
||||
about: {
|
||||
|
||||
Reference in New Issue
Block a user