update?
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
This commit is contained in:
326
content/CSE5313/CSE5313_L25.md
Normal file
326
content/CSE5313/CSE5313_L25.md
Normal file
@@ -0,0 +1,326 @@
|
||||
# CSE5313 Coding and information theory for data science (Lecture 25)
|
||||
|
||||
## Polynomial Evaluation
|
||||
|
||||
Problem formulation:
|
||||
|
||||
- We have $K$ datasets $X_1,X_2,\ldots,X_K$.
|
||||
- Want to compute some polynomial function $f$ of degree $d$ on each dataset.
|
||||
- Want $f(X_1),f(X_2),\ldots,f(X_K)$.
|
||||
- Examples:
|
||||
- $X_1,X_2,\ldots,X_K$ are points in $\mathbb{F}^{M\times M}$, and $f(X)=X^8+3X^2+1$.
|
||||
- $X_k=(X_k^{(1)},X_k^{(2)})$, both in $\mathbb{F}^{M\times M}$, and $f(X)=X_k^{(1)}X_k^{(2)}$.
|
||||
- Gradient computation.
|
||||
|
||||
$P$ worker nodes:
|
||||
|
||||
- Some are stragglers, i.e., not responsive.
|
||||
- Some are adversaries, i.e., return erroneous results.
|
||||
- Privacy: We do not want to expose datasets to worker nodes.
|
||||
|
||||
### Lagrange Coded Computing
|
||||
|
||||
Let $\ell(z)$ be a polynomial whose evaluations at $\omega_1,\ldots,\omega_{K}$ are $X_1,\ldots,X_K$.
|
||||
|
||||
- That is, $\ell(\omega_i)=X_i$ for every $\omega_i\in \mathbb{F}, i\in [K]$.
|
||||
|
||||
Some example constructions:
|
||||
|
||||
Given $X_1,\ldots,X_K$ with corresponding $\omega_1,\ldots,\omega_K$
|
||||
|
||||
- $\ell(z)=\sum_{i=1}^K X_i\ell_i(z)$, where $\ell_i(z)=\prod_{j\in[K],j\neq i} \frac{z-\omega_j}{\omega_i-\omega_j}=\begin{cases} 0 & \text{if } j\neq i \\ 1 & \text{if } j=i \end{cases}$.
|
||||
|
||||
Then every $f(X_i)=f(\ell(\omega_i))$ is an evaluation of polynomial $f\circ \ell(z)$ at $\omega_i$.
|
||||
|
||||
If the master obtains the composition $h=f\circ \ell$, it can obtain every $f(X_i)=h(\omega_i)$.
|
||||
|
||||
Goal: The master wished to obtain the polynomial $h(z)=f(\ell(z))$.
|
||||
|
||||
Intuition:
|
||||
|
||||
- Encoding is performed by evaluating $\ell(z)$ at $\alpha_1,\ldots,\alpha_P\in \mathbb{F}$, and $P>K$ for redundancy.
|
||||
- Nodes apply $f$ on an evaluation of $\ell$ and obtain an evaluation of $h$.
|
||||
- The master receives some potentially noisy evaluations, and finds $h$.
|
||||
- The master evaluates $h$ at $\omega_1,\ldots,\omega_K$ to obtain $f(X_1),\ldots,f(X_K)$.
|
||||
|
||||
### Encoding for Lagrange coded computing
|
||||
|
||||
Need polynomial $\ell(z)$ such that:
|
||||
|
||||
- $X_k=\ell(\omega_k)$ for every $k\in [K]$.
|
||||
|
||||
Having obtained such $\ell$ we let $\tilde{X}_i=\ell(\alpha_i)$ for every $i\in [P]$.
|
||||
|
||||
$span{\tilde{X}_1,\tilde{X}_2,\ldots,\tilde{X}_P}=span{\ell_1(x),\ell_2(x),\ldots,\ell_P(x)}$.
|
||||
|
||||
Want $X_k=\ell(\omega_k)$ for every $k\in [K]$.
|
||||
|
||||
Tool: Lagrange interpolation.
|
||||
|
||||
- $\ell_k(z)=\prod_{i\neq k} \frac{z-\omega_j}{\omega_k-\omega_j}$.
|
||||
- $\ell_k(\omega_k)=1$ and $\ell_k(\omega_k)=0$ for every $j\neq k$.
|
||||
- $\deg \ell_k(z)=K-1$.
|
||||
|
||||
Let $\ell(z)=\sum_{k=1}^K X_k\ell_k(z)$.
|
||||
|
||||
- $\deg \ell\leq K-1$.
|
||||
- $\ell(\omega_k)=X_k$ for every $k\in [K]$.
|
||||
|
||||
Let $\tilde{X}_i=\ell(\alpha_i)=\sum_{k=1}^K X_k\ell_k(\alpha_i)$.
|
||||
|
||||
Every $\tilde{X}_i$ is a **linear combination** of $X_1,\ldots,X_K$.
|
||||
|
||||
$$
|
||||
(\tilde{X}_1,\tilde{X}_2,\ldots,\tilde{X}_P)=(X_1,\ldots,X_K)\cdot G=(X_1,\ldots,X_K)\begin{bmatrix}
|
||||
\ell_1(\alpha_1) & \ell_1(\alpha_2) & \cdots & \ell_1(\alpha_P) \\
|
||||
\ell_2(\alpha_1) & \ell_2(\alpha_2) & \cdots & \ell_2(\alpha_P) \\
|
||||
\vdots & \vdots & \ddots & \vdots \\
|
||||
\ell_K(\alpha_1) & \ell_K(\alpha_2) & \cdots & \ell_K(\alpha_P)
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||
This $G$ is called a **Lagrange matrix** with respect to
|
||||
|
||||
- $\omega_1,\ldots,\omega_K$. (interpolation points, rows)
|
||||
- $\alpha_1,\ldots,\alpha_P$. (evaluation points, columns)
|
||||
|
||||
> Basically, a modification of Reed-Solomon code.
|
||||
|
||||
### Decoding for Lagrange coded computing
|
||||
|
||||
Say the system has $S$ stragglers (erasures) and $A$ adversaries (errors).
|
||||
|
||||
The master receives $P-S$ computation results $f(\tilde{X}_{i_1}),\ldots,f(\tilde{X}_{i_{P-S}})$.
|
||||
|
||||
- By design, therese are evaluations of $h: h(a_{i_1})=f(\ell(a_{i_1})),\ldots,h(a_{i_{P-S}})=f(\ell(a_{i_{P-S}}))$
|
||||
- A evaluation are noisy
|
||||
- $\deg h=\deg f\cdot \deg \ell=(K-1)\deg f$.
|
||||
|
||||
Which process enables to interpolate a polynomial from noisy evaluations?
|
||||
|
||||
Ree-Solomon (RS) decoding.
|
||||
|
||||
Fact: Reed-Solomon decoding succeeds if and only if the number of erasures + 2 $\times$ the number of errors $\leq d-1$.
|
||||
|
||||
Imagine $h$ as the "message" in Reed-Solomon code. $[P,(K-1)\deg f +1,P-(K-1)\deg f]_q$.
|
||||
|
||||
- Interpolating $h$ is possible if and only if $S+2A\leq (K-1)\deg f-1$.
|
||||
|
||||
Once the master interpolates $h$.
|
||||
|
||||
- The evaluations $h(\omega_i)=f(\ell(\omega_i))=f(X_i)$ provides the interpolation results.
|
||||
|
||||
#### Theorem of Lagrange coded computing
|
||||
|
||||
Lagrange coded computing enables to compute $\{f(X_i)\}_{i=1}^K$ for any $f$ at the presence of at most $S$ stragglers and at most $A$ adversaries if
|
||||
|
||||
$$
|
||||
(K-1)\deg f+S+2A+1\leq P
|
||||
$$
|
||||
|
||||
> Interpolation of result does not depend on $P$ (number of worker nodes).
|
||||
|
||||
### Privacy for Lagrange coded computing
|
||||
|
||||
Currently any size-$K$ group of colluding nodes reveals the entire dataset.
|
||||
|
||||
Q: Can an individual node $i$ learn anything about $X_i$?
|
||||
|
||||
A: Yes, since $\tilde{X}_i$ is a linear combination of $X_1,\ldots,X_K$ (partial knowledge, a linear combination of private data).
|
||||
|
||||
Can we provide **perfect privacy** given that at most $T$ nodes collude?
|
||||
|
||||
- That is, $I(X:\tilde{X}_i)=0$ for every $\mathcal{T}\subseteq [P]$ of size at most $T$, where
|
||||
- $X=(X_1,\ldots,X_K)$, and
|
||||
- $\tilde{X}_\mathcal{T}=(\tilde{X}_{i_1},\ldots,\tilde{X}_{i_{|\mathcal{T}|}})$.
|
||||
|
||||
Solution: Slight change of encoding in LLC.
|
||||
|
||||
This only applied to $\mathbb{F}=\mathbb{F}_q$ (no perfect privacy over $\mathbb{R},\mathbb{C}$. No uniform distribution can be defined).
|
||||
|
||||
The master chooses
|
||||
|
||||
- $T$ keys $Z_{K+1},\ldots,Z_{K+T}$ uniformly at random ($|Z_i|=|X_i|$ for all $i$)
|
||||
- Interpolation points $\omega_1,\ldots,\omega_{K+T}$.
|
||||
|
||||
Find the Lagrange polynomial $\ell(z)$ such that
|
||||
|
||||
- $\ell(w_i)=X_i$ for $i\in [K]$
|
||||
- $\ell(w_{K+j})=Z_j$ for $j\in [T]$.
|
||||
|
||||
Lagrange interpolation:
|
||||
|
||||
$$
|
||||
\ell(z)=\sum_{i=1}^{K} X_i\ell_i(z)+\sum_{j=1}^{T} X_{K+j}ell_{K+j}(z)
|
||||
$$
|
||||
|
||||
$$
|
||||
(\tilde{X}_1,\ldots,\tilde{X}_P)=(X_1,\ldots,X_K,Z_1,\ldots,Z_T)\cdot G
|
||||
$$
|
||||
|
||||
where
|
||||
|
||||
$$
|
||||
G=\begin{bmatrix}
|
||||
\ell_1(\alpha_1) & \ell_1(\alpha_2) & \cdots & \ell_1(\alpha_P) \\
|
||||
\ell_2(\alpha_1) & \ell_2(\alpha_2) & \cdots & \ell_2(\alpha_P) \\
|
||||
\vdots & \vdots & \ddots & \vdots \\
|
||||
\ell_K)(\alpha_1) & \ell_K(\alpha_2) & \cdots & \ell_K(\alpha_P) \\
|
||||
\vdots & \vdots & \ddots & \vdots \\
|
||||
\ell_{K+T}(\alpha_1) & \ell_{K+T}(\alpha_2) & \cdots & \ell_{K+T}(\alpha_P)
|
||||
$$
|
||||
|
||||
For analysis, we denote $G=\begin{bmatrix}G^{top}\\G^{bot}\end{bmatrix}$, where $G^{top}\in \mathbb{F}^{K\times P}$ and $G^{bot}\in \mathbb{F}^{T\times P}$.
|
||||
|
||||
The proof for privacy is the almost the same as ramp scheme.
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
We have $(\tilde{X}_1,\ldots \tilde{X}_P)=(X_1,\ldots,X_K)\cdot G^{top}+(Z_1,\ldots,Z_T)\cdot G^{bot}$.
|
||||
|
||||
Without loss of generality, $\mathcal{T}=[T]$ is the colluding set.
|
||||
|
||||
$\mathcal{T}$ hold $(\tilde{X}_1,\ldots \tilde{X}_P)=(X_1,\ldots,X_K)\cdot G^{top}_\mathcal{T}+(Z_1,\ldots,Z_T)\cdot G^{bot}_\mathcal{top}$.
|
||||
|
||||
- $G^{top}_\mathcal{T}$, $G^{bot}_\mathcal{T}$ contain the first $T$ columns of $G^{top}$, $G^{bot}$, respectively.
|
||||
|
||||
Note that $G^{top}\in \mathbb{F}^{T\times P}_q$ is MDS, and hence $G^{top}_\mathcal{T}$ is a $T\times T$ invertible matrix.
|
||||
|
||||
Since $Z=(Z_1,\ldots,Z_T)$ chosen uniformly random, so $Z\cdot G^{bot}_\mathcal{T}$ is a one-time pad.
|
||||
|
||||
Same proof for decoding, we only need $K+1$ item to make the interpolation work.
|
||||
|
||||
</details>
|
||||
|
||||
## Conclusion
|
||||
|
||||
- Theorem: Lagrange Coded Computing is resilient against $S$ stragglers, $A$ adversaries, and $T$ colluding nodes if
|
||||
$$
|
||||
P\geq (K+T-1)\deg f+S+2A+1
|
||||
$$
|
||||
- Privacy (increase with $\deg f$) cost more than the straggler and adversary (increase linearly).
|
||||
- Caveat: Requires finite field arithmetic!
|
||||
- Some follow-up works analyzed information leakage over the reals
|
||||
|
||||
## Side note for Blockchain
|
||||
|
||||
Blockchain: A decentralized system for trust management.
|
||||
|
||||
Blockchain maintains a chain of blocks.
|
||||
|
||||
- A block contains a set of transactions.
|
||||
- Transaction = value transfer between clients.
|
||||
- The chain is replicated on each node.
|
||||
|
||||
Periodically, a new block is proposed and appended to each local chain.
|
||||
|
||||
- The block must not contain invalid transactions.
|
||||
- Nodes must agree on proposed block.
|
||||
|
||||
Existing systems:
|
||||
|
||||
- All nodes perform the same set of tasks.
|
||||
- Every node must receive every block.
|
||||
|
||||
Performance does not scale with number of node
|
||||
|
||||
### Improving performance of blockchain
|
||||
|
||||
The performance of blockchain is inherently limited by its design.
|
||||
|
||||
- All nodes perform the same set of tasks.
|
||||
- Every node must receive every block.
|
||||
|
||||
Idea: Combine blockchain with distributed computing.
|
||||
|
||||
- Node tasks should complement each other.
|
||||
|
||||
Sharding (notion from databases):
|
||||
|
||||
- Nodes are partitioned into groups of equal size.
|
||||
- Each group maintains a local chain.
|
||||
- More nodes, more groups, more transactions can be processed.
|
||||
- Better performance.
|
||||
|
||||
### Security Problem
|
||||
|
||||
Biggest problem in blockchains: Adversarial (Byzantine) nodes.
|
||||
|
||||
- Malicious actors wish to include invalid transactions.
|
||||
|
||||
Solution in traditional blockchains: Consensus mechanisms.
|
||||
|
||||
- Algorithms for decentralized agreement.
|
||||
- Tolerates up to $1/3$ Byzantine nodes.
|
||||
|
||||
Problem: Consensus conflicts with sharding.
|
||||
|
||||
- Traditional consensus mechanisms tolerate $\approx 1/3$ Byzantine nodes.
|
||||
- If we partition $P$ nodes into $K$ groups, we can tolerate only $P/3K$ node failures.
|
||||
- Down from $P/3$ in non-shared systems.
|
||||
|
||||
Goal: Solve the consensus problem in sharded systems.
|
||||
|
||||
Tool: Coded computing.
|
||||
|
||||
### Problem formulation
|
||||
|
||||
At epoch $t$ of a shared blockchain system, we have
|
||||
|
||||
- $K$ local chain $Y_1^{t-1},\ldots, Y_K^{t-1}$.
|
||||
- $K$ new blocks $X_1(t),\ldots,X_K(t)$.
|
||||
- A polynomial verification function $f(X_k(t),Y_k^t)$, which validates $X_k(t)$.
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Balance check function $f(X_k(t),Y_k^t)=\sum_\tau Y_k(\tau)-X_k(t)$.
|
||||
|
||||
More commonly, a (polynomial) hash function. Used to:
|
||||
|
||||
- Verify the sender's public key.
|
||||
- Verify the ownership of the transferred funds.
|
||||
|
||||
</details>
|
||||
|
||||
Need: Apply a polynomial functions on $K$ datasets.
|
||||
|
||||
Lagrange coded computing!
|
||||
|
||||
### Blockchain with Lagrange coded computing
|
||||
|
||||
At epoch $t$:
|
||||
|
||||
- A leader is elected (using secure election mechanism).
|
||||
- The leader receives new blocks $X_1(t),\ldots,X_K(t)$.
|
||||
- The leader disperses the encoded blocks $\tilde{X}_1(t),\ldots,\tilde{X}_P(t)$ to nodes.
|
||||
- Needs secure information dispersal mechanisms.
|
||||
|
||||
Every node $i\in [P]$:
|
||||
|
||||
- Locally stores a coded chain $\tilde{Y}_i^t$ (encoded using LCC).
|
||||
- Receives $\tilde{X}_i(t)$.
|
||||
- Computes $f(\tilde{X}_i(t),\tilde{Y}_i^t)$ and sends to the leader.
|
||||
|
||||
The leader decodes to get $\{f(X_i(t),Y_i^t)\}_{i=1}^K$ and disperse securely to nodes.
|
||||
|
||||
Node $i$ appends coded block $\tilde{X}_i(t)$ to coded chain $\tilde{Y}_i^t$ (zeroing invalid transactions).
|
||||
|
||||
Guarantees security if $P\geq (K+T-1)\deg f+S+2A+1$.
|
||||
|
||||
- $A$ adversaries, degree $d$ verification polynomial.
|
||||
|
||||
Sharding without sharding:
|
||||
|
||||
- Computations are done on (coded) partial chains/blocks.
|
||||
- Good performance!
|
||||
- Since blocks/chains are coded, they are "dispersed" among many nodes.
|
||||
- Security problem in sharding solved!
|
||||
- Since the encoding is done (securely) through a leader, no need to send every block to all nodes.
|
||||
- Reduced communication! (main bottleneck).
|
||||
|
||||
Novelties:
|
||||
|
||||
- First decentralized verification system with less than size of blocks times the number of nodes communication.
|
||||
- Coded consensus – Reach consensus on coded data.
|
||||
Reference in New Issue
Block a user