updates
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
This commit is contained in:
@@ -14,4 +14,10 @@ Classifying two dimensional surfaces.
|
||||
|
||||
## Quotient spaces
|
||||
|
||||
Let $X$ be a topological space and $f:X\to Y$ is a continuous, surjective map. WIth the property that $U\subset Y$ is open if and only if $f^{-1}(U)$ is open in $X$, we say $f$ is a quotient map and $Y$ is a quotient space.
|
||||
Let $X$ be a topological space and $f:X\to Y$ is a
|
||||
|
||||
1. continuous
|
||||
2. surjective map.
|
||||
3. With the property that $U\subset Y$ is open if and only if $f^{-1}(U)$ is open in $X$.
|
||||
|
||||
Then we say $f$ is a quotient map and $Y$ is a quotient space.
|
||||
|
||||
62
content/Math4202/Math4202_L2.md
Normal file
62
content/Math4202/Math4202_L2.md
Normal file
@@ -0,0 +1,62 @@
|
||||
# Math4202 Topology II (Lecture 2)
|
||||
|
||||
## Reviewing quotient map
|
||||
|
||||
Recall from last lecture example (Example 4 form Munkers):
|
||||
|
||||
A map of wrapping closed unit circle to $S^2$, where $f:\mathbb{R}^2\to S^2$ maps everything outside of circle to south pole $s$.
|
||||
|
||||
To show it is a quotient space, we need to show that $f$:
|
||||
|
||||
1. is continuous (every open set in $S^2$ has reverse image open in $\mathbb{R}^2$)
|
||||
2. surjective (trivial)
|
||||
3. with the property that $U\subset S^2$ is open if and only if $f^{-1}(U)$ is open in $\mathbb{R}^2$.
|
||||
|
||||
- If $A\subseteq S^2$ is open, then $f^{-1}(A)$ is open in $\mathbb{R}^2$. (consider the basis, the set of circle in $\mathbb{R}^2$, they are mapped to closed sets in $S^2$)
|
||||
|
||||
- If $f^{-1}(A)$ is open in $\mathbb{R}^2$, then $A$ is open in $S^2$.
|
||||
- If $s\notin A$, then $f$ is a bijection, and $A$ is open in $S^2$.
|
||||
- If $s\in A$, then $f^{-1}(A)$ is open and contains the complement of set $S=\{(x,y)|x^2+y^2\geq 1\}=f^{-1}(\{s\})$, therefore there exists $U=\bigcup_{x\in S} B_{\epsilon _x}(x)$ is open in $\mathbb{R}^2$, $U\subseteq f^{-1}(A)$, $f^{-1}(\{s\})\subseteq U$.
|
||||
- Since $\partial f^{-1}(\{s\})$ is compact, we can even choose $U$ to be the set of the following form
|
||||
- $\{(x,y)|x^2+y^2>1-\epsilon\}$ for some $1>\epsilon>0$.
|
||||
- So $f(U)$ is an open set in $A$ and contains $s$.
|
||||
- $s$ is an interior point of $A$.
|
||||
- Other oint $y$ in $A$ follows the arguments in the first case.
|
||||
|
||||
### Quotient space
|
||||
|
||||
#### Definition of quotient topology induced by quotient map
|
||||
|
||||
If $X$ is a topological space and $A$ is a set and if $p:X\to A$ is surjective, there exists exactly one topology $\mathcal{T}$ on $A$ relative to which $p$ is a quotient map.
|
||||
|
||||
$$
|
||||
\mathcal{T} \coloneqq \{U|f^{-1}(U)\text{ is open in }X\}
|
||||
$$
|
||||
|
||||
and $\mathcal{T}$ is called the quotient topology on $A$ induced by $p$.
|
||||
|
||||
#### Definition of quotient topology induced by equivalence relation
|
||||
|
||||
Let $X$ be a topological space, and let $X^*$ be a partition of $X$ into disjoint subsets whose union is $X$. Let $p:X\to X^*$ be the surjective map that sends each $x\in X$ to the unique $A\in X^*$ such that each point of $X$ to the subset containing the point. In the quotient topology induced by $p$, the space $X^*$ is called the associated quotient space.
|
||||
|
||||
<details>
|
||||
<summary>Example of quotient topology induced by equivalence relation</summary>
|
||||
|
||||
Consider $S^n$ and $x\sim -x$, then the induced quotient topology is $\mathbb{R}P^n$ (the set of lines in $\mathbb{R}^n$ passing through the origin).
|
||||
|
||||
</details>
|
||||
|
||||
#### Theorem about a quotient map and quotient topology
|
||||
|
||||
Let $p:X\to Y$ be a quotient map; and $A$ be a subspace of $X$, that is **saturated** with respect to $p$: Let $q:A\to p(A)$ be the restriction of $p$ to $A$.
|
||||
|
||||
1. If $A$ is either open or closed in $X$, then $q$ is a quotient map.
|
||||
2. If $p$ is either open or closed, then $q$ is a quotient map.
|
||||
|
||||
> [!NOTE]
|
||||
>
|
||||
> Recall the definition of saturated set:
|
||||
>
|
||||
> $\forall y\in Y$, consider the set $f^{-1}(\{y\})\subset X$, if $f^{-1}(\{y\})\cap A\neq \emptyset$, then $f^{-1}(\{y\})\subseteq A$. _sounds like connectedness_
|
||||
>
|
||||
> That is equivalent to say that $A$ is a union of $f^{-1}(\{y\})$ for some $y\in Y$.
|
||||
@@ -4,4 +4,5 @@ export default {
|
||||
type: 'separator'
|
||||
},
|
||||
Math4202_L1: "Topology II (Lecture 1)",
|
||||
Math4202_L2: "Topology II (Lecture 2)",
|
||||
}
|
||||
|
||||
176
content/Math4302/Math4302_L2.md
Normal file
176
content/Math4302/Math4302_L2.md
Normal file
@@ -0,0 +1,176 @@
|
||||
# Math4302 Modern Algebra (Lecture 2)
|
||||
|
||||
## Recall from last lecture
|
||||
|
||||
### Binary operations
|
||||
|
||||
A binary operation that is not associative but commutative:
|
||||
|
||||
Consider $(\mathbb{Z},*)$ where $a*b=|a-b|$.
|
||||
|
||||
This is trivially commutative.
|
||||
|
||||
But $a=4,b=3,c=1$ gives $(a*b)*c=(4*3)*1=1*1=0$. and $a*(b*c)=4*(3*1)=4*2=2$.
|
||||
|
||||
#### Definition for identity element
|
||||
|
||||
An element $e\in X$ is called identity element if $a*e=e*a=a$ for all $a\in X$.
|
||||
|
||||
### Group
|
||||
|
||||
#### Definition of group
|
||||
|
||||
A group is a set $G$ with a binary operation $*$ that satisfies the following axioms:
|
||||
|
||||
1. Closure: $\forall a,b\in G, a* b\in G$ (automatically guaranteed by definition of binary operation).
|
||||
2. Associativity: $\forall a,b,c\in G, (a* b)* c=a* (b* c)$.
|
||||
3. Identity element: $\exists e\in G, \forall a\in G, a* e=e* a=a$.
|
||||
4. Inverses: $\forall a\in G, \exists a^{-1}\in G, a* a^{-1}=a^{-1}* a=e$.
|
||||
|
||||
> [!NOTE]
|
||||
>
|
||||
> The inverse of $a$ is unique: If there is $b'\in G$ such that $b'*a=a*b'=e$, then $b=b'$.
|
||||
>
|
||||
> Proof:
|
||||
>
|
||||
> $b'=b'*e=b'*(a*b)=(b'*a)*b=e*b=b$.
|
||||
>
|
||||
> apply the definition of group.
|
||||
|
||||
<details>
|
||||
<summary>Example of group</summary>
|
||||
|
||||
$(\mathbb{Z},+)$ is a group.
|
||||
|
||||
$(\mathbb{Q},+)$ is a group.
|
||||
|
||||
$(\mathbb{R},+)$ is a group.
|
||||
|
||||
with identity $0$ and all abelian groups.
|
||||
|
||||
---
|
||||
|
||||
$(\mathbb{Z},\cdot)$, $\mathbb{Q},\cdot)$, $(\mathbb{R},\cdot)$ are not groups ($0$ has no inverse).
|
||||
|
||||
---
|
||||
|
||||
We can fix this by removing $0$.
|
||||
|
||||
$(\mathbb{Q}\setminus\{0\},\cdot)$, $(\mathbb{R}\setminus\{0\},\cdot)$ are groups.
|
||||
|
||||
---
|
||||
|
||||
$(\mathbb{Z}\setminus\{0\},\cdot)$ is not a group.
|
||||
|
||||
$(\mathbb{Z}_+,+)$ is not a group.
|
||||
|
||||
---
|
||||
|
||||
Consider $S$ be the set of all functions from $\mathbb{R}$ to $\mathbb{R}$.
|
||||
|
||||
$(S,+)$
|
||||
|
||||
- Identity: $f(x)=0$
|
||||
- Associativity: $(f+g)(x)=f(x)+g(x)$
|
||||
- Inverse: $f(x)=-f(x)$
|
||||
|
||||
This is a group.
|
||||
|
||||
$(S,\circ)$
|
||||
|
||||
- Identity: $f(x)=x$
|
||||
- Associativity: $(f\circ g)(x)=f(g(x))$
|
||||
- Inverse: not all have inverse...... (functions which are not bijective don't have inverses)
|
||||
|
||||
This is not a group.
|
||||
|
||||
---
|
||||
|
||||
$\operatorname{GL}_(n,\mathbb{R})$: set of $n\times n$ invertible matrices over $\mathbb{R}$.
|
||||
|
||||
$(\operatorname{SL}_(n,\mathbb{R}),\cdot)$ where $\cdot$ is matrix multiplication.
|
||||
|
||||
- Identity: $I_n$
|
||||
- Associativity: $(A\cdot B)\cdot C=A\cdot (B\cdot C)$
|
||||
- Inverse: $(A^{-1})^{-1}=A$
|
||||
|
||||
This is a group.
|
||||
|
||||
**Matrix multiplication is not generally commutative**, therefore it's not abelian.
|
||||
|
||||
</details>
|
||||
|
||||
#### Definition of abelian group
|
||||
|
||||
A group $(G,*)$ is called abelian if $a* b=b* a$ for all $a,b\in G$. ($*$ is commutative)
|
||||
|
||||
#### Properties of group
|
||||
|
||||
1. $(a*b)^{-1}=b^{-1}* a^{-1}$
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
$(b^{-1}* a^{-1})*(a*b)=b^{-1}* a^{-1}*a*b=b^{-1}* e*b=b*b^{-1}=e$
|
||||
|
||||
$(a*b)* (b^{-1}* a^{-1})=a* b*b^{-1}* a^{-1}=a* e*a^{-1}=a*a^{-1}=e$
|
||||
|
||||
</details>
|
||||
|
||||
2. Cancellation from right and left:
|
||||
|
||||
$$
|
||||
a*b=a*c\implies b=c
|
||||
$$
|
||||
|
||||
$$
|
||||
b*a=c*a\implies b=c
|
||||
$$
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
a*b&=a*c\\
|
||||
a^{-1}*(a*b)&=a^{-1}*(a*c)\\
|
||||
e*b&=e*c\\
|
||||
b&=c
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
right cancellation are the same
|
||||
|
||||
</details>
|
||||
|
||||
> [!NOTE]
|
||||
>
|
||||
> This also implies that every row/column of the table representation of the binary operation is distinct.
|
||||
|
||||
3. We can solve equations $a*x=b \text{ and } x*a=b
|
||||
$ uniquely.
|
||||
|
||||
$x=a^{-1}* b$, similarly $x=b* a^{-1}$.
|
||||
|
||||
### Finite groups
|
||||
|
||||
Group with 1 element $\{e\}$.
|
||||
|
||||
Group with 2 elements $\{e,a\}$.
|
||||
|
||||
And
|
||||
|
||||
|*|e|a|
|
||||
|-|-|-|
|
||||
|e|e|a|
|
||||
|a|a|e|
|
||||
|
||||
Group with 3 elements $\{e,a,b\}$.
|
||||
|
||||
And the possible ways to fill the table are:
|
||||
|
||||
|*|e|a|b|
|
||||
|-|-|-|-|
|
||||
|e|e|a|b|
|
||||
|a|a|b|e|
|
||||
|b|b|e|a|
|
||||
@@ -4,4 +4,5 @@ export default {
|
||||
type: 'separator'
|
||||
},
|
||||
Math4302_L1: "Modern Algebra (Lecture 1)",
|
||||
Math4302_L2: "Modern Algebra (Lecture 2)",
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user