updates
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled

This commit is contained in:
Zheyuan Wu
2026-01-14 13:52:17 -06:00
parent 9974b12b09
commit 2f1612674e
5 changed files with 247 additions and 1 deletions

View File

@@ -0,0 +1,176 @@
# Math4302 Modern Algebra (Lecture 2)
## Recall from last lecture
### Binary operations
A binary operation that is not associative but commutative:
Consider $(\mathbb{Z},*)$ where $a*b=|a-b|$.
This is trivially commutative.
But $a=4,b=3,c=1$ gives $(a*b)*c=(4*3)*1=1*1=0$. and $a*(b*c)=4*(3*1)=4*2=2$.
#### Definition for identity element
An element $e\in X$ is called identity element if $a*e=e*a=a$ for all $a\in X$.
### Group
#### Definition of group
A group is a set $G$ with a binary operation $*$ that satisfies the following axioms:
1. Closure: $\forall a,b\in G, a* b\in G$ (automatically guaranteed by definition of binary operation).
2. Associativity: $\forall a,b,c\in G, (a* b)* c=a* (b* c)$.
3. Identity element: $\exists e\in G, \forall a\in G, a* e=e* a=a$.
4. Inverses: $\forall a\in G, \exists a^{-1}\in G, a* a^{-1}=a^{-1}* a=e$.
> [!NOTE]
>
> The inverse of $a$ is unique: If there is $b'\in G$ such that $b'*a=a*b'=e$, then $b=b'$.
>
> Proof:
>
> $b'=b'*e=b'*(a*b)=(b'*a)*b=e*b=b$.
>
> apply the definition of group.
<details>
<summary>Example of group</summary>
$(\mathbb{Z},+)$ is a group.
$(\mathbb{Q},+)$ is a group.
$(\mathbb{R},+)$ is a group.
with identity $0$ and all abelian groups.
---
$(\mathbb{Z},\cdot)$, $\mathbb{Q},\cdot)$, $(\mathbb{R},\cdot)$ are not groups ($0$ has no inverse).
---
We can fix this by removing $0$.
$(\mathbb{Q}\setminus\{0\},\cdot)$, $(\mathbb{R}\setminus\{0\},\cdot)$ are groups.
---
$(\mathbb{Z}\setminus\{0\},\cdot)$ is not a group.
$(\mathbb{Z}_+,+)$ is not a group.
---
Consider $S$ be the set of all functions from $\mathbb{R}$ to $\mathbb{R}$.
$(S,+)$
- Identity: $f(x)=0$
- Associativity: $(f+g)(x)=f(x)+g(x)$
- Inverse: $f(x)=-f(x)$
This is a group.
$(S,\circ)$
- Identity: $f(x)=x$
- Associativity: $(f\circ g)(x)=f(g(x))$
- Inverse: not all have inverse...... (functions which are not bijective don't have inverses)
This is not a group.
---
$\operatorname{GL}_(n,\mathbb{R})$: set of $n\times n$ invertible matrices over $\mathbb{R}$.
$(\operatorname{SL}_(n,\mathbb{R}),\cdot)$ where $\cdot$ is matrix multiplication.
- Identity: $I_n$
- Associativity: $(A\cdot B)\cdot C=A\cdot (B\cdot C)$
- Inverse: $(A^{-1})^{-1}=A$
This is a group.
**Matrix multiplication is not generally commutative**, therefore it's not abelian.
</details>
#### Definition of abelian group
A group $(G,*)$ is called abelian if $a* b=b* a$ for all $a,b\in G$. ($*$ is commutative)
#### Properties of group
1. $(a*b)^{-1}=b^{-1}* a^{-1}$
<details>
<summary>Proof</summary>
$(b^{-1}* a^{-1})*(a*b)=b^{-1}* a^{-1}*a*b=b^{-1}* e*b=b*b^{-1}=e$
$(a*b)* (b^{-1}* a^{-1})=a* b*b^{-1}* a^{-1}=a* e*a^{-1}=a*a^{-1}=e$
</details>
2. Cancellation from right and left:
$$
a*b=a*c\implies b=c
$$
$$
b*a=c*a\implies b=c
$$
<details>
<summary>Proof</summary>
$$
\begin{aligned}
a*b&=a*c\\
a^{-1}*(a*b)&=a^{-1}*(a*c)\\
e*b&=e*c\\
b&=c
\end{aligned}
$$
right cancellation are the same
</details>
> [!NOTE]
>
> This also implies that every row/column of the table representation of the binary operation is distinct.
3. We can solve equations $a*x=b \text{ and } x*a=b
$ uniquely.
$x=a^{-1}* b$, similarly $x=b* a^{-1}$.
### Finite groups
Group with 1 element $\{e\}$.
Group with 2 elements $\{e,a\}$.
And
|*|e|a|
|-|-|-|
|e|e|a|
|a|a|e|
Group with 3 elements $\{e,a,b\}$.
And the possible ways to fill the table are:
|*|e|a|b|
|-|-|-|-|
|e|e|a|b|
|a|a|b|e|
|b|b|e|a|