updates
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
This commit is contained in:
176
content/Math4302/Math4302_L2.md
Normal file
176
content/Math4302/Math4302_L2.md
Normal file
@@ -0,0 +1,176 @@
|
||||
# Math4302 Modern Algebra (Lecture 2)
|
||||
|
||||
## Recall from last lecture
|
||||
|
||||
### Binary operations
|
||||
|
||||
A binary operation that is not associative but commutative:
|
||||
|
||||
Consider $(\mathbb{Z},*)$ where $a*b=|a-b|$.
|
||||
|
||||
This is trivially commutative.
|
||||
|
||||
But $a=4,b=3,c=1$ gives $(a*b)*c=(4*3)*1=1*1=0$. and $a*(b*c)=4*(3*1)=4*2=2$.
|
||||
|
||||
#### Definition for identity element
|
||||
|
||||
An element $e\in X$ is called identity element if $a*e=e*a=a$ for all $a\in X$.
|
||||
|
||||
### Group
|
||||
|
||||
#### Definition of group
|
||||
|
||||
A group is a set $G$ with a binary operation $*$ that satisfies the following axioms:
|
||||
|
||||
1. Closure: $\forall a,b\in G, a* b\in G$ (automatically guaranteed by definition of binary operation).
|
||||
2. Associativity: $\forall a,b,c\in G, (a* b)* c=a* (b* c)$.
|
||||
3. Identity element: $\exists e\in G, \forall a\in G, a* e=e* a=a$.
|
||||
4. Inverses: $\forall a\in G, \exists a^{-1}\in G, a* a^{-1}=a^{-1}* a=e$.
|
||||
|
||||
> [!NOTE]
|
||||
>
|
||||
> The inverse of $a$ is unique: If there is $b'\in G$ such that $b'*a=a*b'=e$, then $b=b'$.
|
||||
>
|
||||
> Proof:
|
||||
>
|
||||
> $b'=b'*e=b'*(a*b)=(b'*a)*b=e*b=b$.
|
||||
>
|
||||
> apply the definition of group.
|
||||
|
||||
<details>
|
||||
<summary>Example of group</summary>
|
||||
|
||||
$(\mathbb{Z},+)$ is a group.
|
||||
|
||||
$(\mathbb{Q},+)$ is a group.
|
||||
|
||||
$(\mathbb{R},+)$ is a group.
|
||||
|
||||
with identity $0$ and all abelian groups.
|
||||
|
||||
---
|
||||
|
||||
$(\mathbb{Z},\cdot)$, $\mathbb{Q},\cdot)$, $(\mathbb{R},\cdot)$ are not groups ($0$ has no inverse).
|
||||
|
||||
---
|
||||
|
||||
We can fix this by removing $0$.
|
||||
|
||||
$(\mathbb{Q}\setminus\{0\},\cdot)$, $(\mathbb{R}\setminus\{0\},\cdot)$ are groups.
|
||||
|
||||
---
|
||||
|
||||
$(\mathbb{Z}\setminus\{0\},\cdot)$ is not a group.
|
||||
|
||||
$(\mathbb{Z}_+,+)$ is not a group.
|
||||
|
||||
---
|
||||
|
||||
Consider $S$ be the set of all functions from $\mathbb{R}$ to $\mathbb{R}$.
|
||||
|
||||
$(S,+)$
|
||||
|
||||
- Identity: $f(x)=0$
|
||||
- Associativity: $(f+g)(x)=f(x)+g(x)$
|
||||
- Inverse: $f(x)=-f(x)$
|
||||
|
||||
This is a group.
|
||||
|
||||
$(S,\circ)$
|
||||
|
||||
- Identity: $f(x)=x$
|
||||
- Associativity: $(f\circ g)(x)=f(g(x))$
|
||||
- Inverse: not all have inverse...... (functions which are not bijective don't have inverses)
|
||||
|
||||
This is not a group.
|
||||
|
||||
---
|
||||
|
||||
$\operatorname{GL}_(n,\mathbb{R})$: set of $n\times n$ invertible matrices over $\mathbb{R}$.
|
||||
|
||||
$(\operatorname{SL}_(n,\mathbb{R}),\cdot)$ where $\cdot$ is matrix multiplication.
|
||||
|
||||
- Identity: $I_n$
|
||||
- Associativity: $(A\cdot B)\cdot C=A\cdot (B\cdot C)$
|
||||
- Inverse: $(A^{-1})^{-1}=A$
|
||||
|
||||
This is a group.
|
||||
|
||||
**Matrix multiplication is not generally commutative**, therefore it's not abelian.
|
||||
|
||||
</details>
|
||||
|
||||
#### Definition of abelian group
|
||||
|
||||
A group $(G,*)$ is called abelian if $a* b=b* a$ for all $a,b\in G$. ($*$ is commutative)
|
||||
|
||||
#### Properties of group
|
||||
|
||||
1. $(a*b)^{-1}=b^{-1}* a^{-1}$
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
$(b^{-1}* a^{-1})*(a*b)=b^{-1}* a^{-1}*a*b=b^{-1}* e*b=b*b^{-1}=e$
|
||||
|
||||
$(a*b)* (b^{-1}* a^{-1})=a* b*b^{-1}* a^{-1}=a* e*a^{-1}=a*a^{-1}=e$
|
||||
|
||||
</details>
|
||||
|
||||
2. Cancellation from right and left:
|
||||
|
||||
$$
|
||||
a*b=a*c\implies b=c
|
||||
$$
|
||||
|
||||
$$
|
||||
b*a=c*a\implies b=c
|
||||
$$
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
a*b&=a*c\\
|
||||
a^{-1}*(a*b)&=a^{-1}*(a*c)\\
|
||||
e*b&=e*c\\
|
||||
b&=c
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
right cancellation are the same
|
||||
|
||||
</details>
|
||||
|
||||
> [!NOTE]
|
||||
>
|
||||
> This also implies that every row/column of the table representation of the binary operation is distinct.
|
||||
|
||||
3. We can solve equations $a*x=b \text{ and } x*a=b
|
||||
$ uniquely.
|
||||
|
||||
$x=a^{-1}* b$, similarly $x=b* a^{-1}$.
|
||||
|
||||
### Finite groups
|
||||
|
||||
Group with 1 element $\{e\}$.
|
||||
|
||||
Group with 2 elements $\{e,a\}$.
|
||||
|
||||
And
|
||||
|
||||
|*|e|a|
|
||||
|-|-|-|
|
||||
|e|e|a|
|
||||
|a|a|e|
|
||||
|
||||
Group with 3 elements $\{e,a,b\}$.
|
||||
|
||||
And the possible ways to fill the table are:
|
||||
|
||||
|*|e|a|b|
|
||||
|-|-|-|-|
|
||||
|e|e|a|b|
|
||||
|a|a|b|e|
|
||||
|b|b|e|a|
|
||||
Reference in New Issue
Block a user