diff --git a/pages/Math416/Math416_L25.md b/pages/Math416/Math416_L25.md index 937fc1c..3aa3994 100644 --- a/pages/Math416/Math416_L25.md +++ b/pages/Math416/Math416_L25.md @@ -93,3 +93,56 @@ $$ $$ QED + +## Application ot valuating definite integrals + +Idea: + +It is easy to evaluate intervals around closed contours. + +Choose contour so one side (where you want to integrate). + +Handle the other side by: + +- Symmetry +- length * supremum of absolute value of integrand +- Bound function by another function whose integral goes to zero. + +Example: + +Evaluate $\int_0^\infty \frac{\sin x}{x}dx$. + +On the contour $\gamma(t)$ be the semicircle in the upper half plane removed the origin. + +Then let $f(z)=\frac{e^{iz}}{z}=\frac{\cos z+i\sin z}{z}$, by the Cauchy's theorem, + +$$ +\int_\gamma f(z)dz=0 +$$ + +So $\frac{\sin z}{z}=0$ on $\gamma$. + +If $x\in \mathbb{R}$, $f(x)=\frac{e^{ix}}{x}=\frac{\cos x+i\sin x}{x}$. + +On the real axis, + +$$ +\begin{aligned} +\int_{-R}^{-\epsilon}+\int_\epsilon^R f(x)dx&=\int_{-R}^{-\epsilon}\frac{e^{ix}}{x}dx+\int_\epsilon^R \frac{e^{ix}}{x}dx\\ +&=\int_{-R}^{-\epsilon}\frac{\cos x+i\sin x}{x}dx+\int_\epsilon^R \frac{\cos x+i\sin x}{x}dx\\ +&=\int_{-R}^{-\epsilon}\frac{\cos x}{x}dx+i\int_{-R}^{-\epsilon}\frac{\sin x}{x}dx+\int_\epsilon^R \frac{\cos x}{x}dx+i\int_\epsilon^R \frac{\sin x}{x}dx\\ +&=2i\int_0^\infty \frac{\sin x}{x}dx +\end{aligned} +$$ + +For the clockwise semi-circle around the origin, + +$$ +\int_{S_\epsilon} f(z)dz=\int_{S_\epsilon}\frac{e^{iz}}{z}dz +$$ + +let $\gamma(t)=\epsilon e^{-it}$, $t\in[-\pi,0]$. + +Then $\gamma'(t)=-i\epsilon e^{-it}$, + +CONTINUE NEXT TIME.