update
This commit is contained in:
@@ -134,7 +134,7 @@ What we can do is to run the algorithm $x$ times independently with probability
|
||||
The probability of the wrong decision is
|
||||
|
||||
$$
|
||||
\binom{x}{\lfloor x/2\rfloor} \left(\frac{1}{2}-\epsilon\right)^{\lfloor x/2\rfloor}
|
||||
\binom{x}{\lceil x/2\rceil} \left(\frac{1}{2}-\epsilon\right)^{\lceil x/2\rceil}
|
||||
$$
|
||||
|
||||
I want to choose $x$ such that this is $\leq \delta$.
|
||||
@@ -145,7 +145,7 @@ So
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\binom{x}{\lfloor x/2\rfloor}\left(\frac{1}{2}-\epsilon\right)^{\lfloor x/2\rfloor}&\leq \left(\frac{xe}{x/2}\right)^{\lfloor x/2\rfloor}\left(\frac{1}{2}-\epsilon\right)^{-\lfloor x/2\rfloor\epsilon}
|
||||
\binom{x}{\lceil x/2\rceil}\left(\frac{1}{2}-\epsilon\right)^{\lceil x/2\rceil}&\leq \left(\frac{xe}{x/2}\right)^{\lceil x/2\rceil}\left(\frac{1}{2}-\epsilon\right)^{-\lceil x/2\rceil\epsilon}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
|
||||
Reference in New Issue
Block a user