From 305cdc283e1ef2e94bbcfe89e635bdc0bab529ca Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Tue, 28 Jan 2025 12:49:38 -0600 Subject: [PATCH] update --- pages/Math416/Math416_L5.md | 225 ++++++++++++++++++++++++++++++++++++ pages/Math416/_meta.js | 1 + 2 files changed, 226 insertions(+) create mode 100644 pages/Math416/Math416_L5.md diff --git a/pages/Math416/Math416_L5.md b/pages/Math416/Math416_L5.md new file mode 100644 index 0000000..29c7f00 --- /dev/null +++ b/pages/Math416/Math416_L5.md @@ -0,0 +1,225 @@ +# Lecture 5 + +## Review + +Let $f$ be a complex function. that maps $\mathbb{R}^2$ to $\mathbb{R}^2$. $f(x+iy)=u(x,y)+iv(x,y)$. + +$Df(x+iy)=\begin{pmatrix} +\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}\\ +\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} +\end{pmatrix}=\begin{pmatrix} +\alpha & \beta\\ +\sigma & \delta +\end{pmatrix}$ + +So + +$$\begin{aligned} +\frac{\partial f}{\partial \zeta}&=\frac{1}{2}\left(u_x+v_y\right)-i\frac{1}{2}\left(v_x+u_y\right)\\ +&=\frac{1}{2}\left(\alpha+\delta\right)-i\frac{1}{2}\left(\beta-\sigma\right)\\ +\end{aligned}$$ + +$$ +\begin{aligned} +\frac{\partial f}{\partial \overline{\zeta}}&=\frac{1}{2}\left(u_x+v_y\right)+i\frac{1}{2}\left(v_x+u_y\right)\\ +&=\frac{1}{2}\left(\alpha-\delta\right)+i\frac{1}{2}\left(\beta+\sigma\right)\\ +\end{aligned} +$$ + +When $f$ is conformal, $Df(x+iy)=\begin{pmatrix} +\alpha & \beta\\ +-\beta & \alpha +\end{pmatrix}$. + +So $\frac{\partial f}{\partial \zeta}=\frac{1}{2}(\alpha+\alpha)+i\frac{1}{2}(\beta+\beta)=a$ + +$\frac{\partial f}{\partial \overline{\zeta}}=\frac{1}{2}(\alpha-\alpha)+i\frac{1}{2}(\beta-\beta)=0$ + +> Less pain to represent a complex function using four real numbers. + +## Chapter 3: Linear fractional Transformations + +Let $a,b,c,d$ be complex numbers. such that $ad-bc\neq 0$. + +The linear fractional transformation is defined as + +$$ +\phi(\zeta)=\frac{a\zeta+b}{c\zeta+d} +$$ + +If we let $\psi(\zeta)=\frac{e\zeta-f}{-g\zeta+h}$ also be a linear fractional transformation, then $\phi\circ\psi$ is also a linear fractional transformation. + +New coefficients can be solved by + +$$ +\begin{pmatrix} +a & b\\ +c & d +\end{pmatrix} +\begin{pmatrix} +e & f\\ +g & h +\end{pmatrix} += +\begin{pmatrix} +k&l\\ +m&n +\end{pmatrix} +$$ + +So $\phi\circ\psi(\zeta)=\frac{k\zeta+l}{m\zeta+n}$ + +### Complex projective space + +$\mathbb{R}P^1$ is the set of lines through the origin in $\mathbb{R}^2$. + +We defined $(a,b)\sim(c,d),(a,b),(c,d)\in\mathbb{R}^2\setminus\{(0,0)\}$ if $\exists t\neq 0,t\in\mathbb{R}\setminus\{0\}$ such that $(a,b)=t(c,d)$. + +$R\mathbb{P}^1=S^1\setminus\{\pm x\}\cong S^1$ + +Equivalently, + +$\mathbb{C}P^1$ is the set of lines through the origin in $\mathbb{C}$. + +We defined $(a,b)\sim(c,d),(a,b),(c,d)\in\mathbb{C}\setminus\{(0,0)\}$ if $\exists t\neq 0,t\in\mathbb{C}\setminus\{0\}$ such that $(a,b)=(tc,td)$. + +So, $\forall \zeta\in\mathbb{C}\setminus\{0\}$: + +If $a\neq 0$, then $(a,b)\sim(1,\frac{b}{a})$. + +If $a=0$, then $(0,b)\sim(0,-b)$. + +So, $\mathbb{C}P^1$ is the set of lines through the origin in $\mathbb{C}$. + +### Linear fractional transformations + +Let $M=\begin{pmatrix} +a & b\\ +c & d +\end{pmatrix}$ be a $2\times 2$ matrix with complex entries. That maps $\mathbb{C}^2$ to $\mathbb{C}^2$. + +Suppose $M$ is non-singular. Then $ad-bc\neq 0$. + +If $M\begin{pmatrix} +\zeta_1\\ +\zeta_2 +\end{pmatrix}=\begin{pmatrix} +\omega_1\\ +\omega_2 +\end{pmatrix}$, then $M\begin{pmatrix} +t\zeta_1\\ +t\zeta_2 +\end{pmatrix}=\begin{pmatrix} +t\omega_1\\ +t\omega_2 +\end{pmatrix}$. + +So, $M$ induces a map $\phi_M:\mathbb{C}P^1\to\mathbb{C}P^1$ defined by $M\begin{pmatrix} +\zeta\\ +1 +\end{pmatrix}=\begin{pmatrix} +\frac{a\zeta+b}{c\zeta+d}\\ +1 +\end{pmatrix}$. + +$\phi_M(\zeta)=\frac{a\zeta+b}{c\zeta+d}$. + +If we let $M_2=\begin{pmatrix} +e &f\\ +g &h +\end{pmatrix}$, where $ad-bc\neq 0$ and $eh-fg\neq 0$, then $\phi_{M_2}(\zeta)=\frac{e\zeta+f}{g\zeta+h}$. + +So, $M_2M_1=\begin{pmatrix} +a&b\\ +c&d +\end{pmatrix}\begin{pmatrix} +e&f\\ +g&h +\end{pmatrix}=\begin{pmatrix} +\zeta\\ +1 +\end{pmatrix}$. + +This also gives $\begin{pmatrix} +k\zeta+l\\ +m\zeta+n +\end{pmatrix}\sim\begin{pmatrix} +\frac{k\zeta+l}{m\zeta+n}\\ +1 +\end{pmatrix}$. + +So, if $ab-cd\neq 0$, then $\exists M^{-1}$ such that $M_2M_1=I$. + +So non-constant linear fractional transformations form a group under composition. + +When do two matrices gives the $t_0$ same linear fractional transformation? + +$M_2^{-1}M_1=\alpha I$ + +We defined $GL(2,\mathbb{C})$ to be the group of general linear transformations of order 2 over $\mathbb{C}$. + +This is equivalent to the group of invertible $2\times 2$ matrices over $\mathbb{C}$ under matrix multiplication. + +Let $F$ be the function that maps $M$ to $\phi_M$. + +$F:GL(2,\mathbb{C})\to\text{Homeo}(\mathbb{C}P^1)$ + +So the kernel of $F$ is the set of matrices that represent the identity transformation. $\ker F=\left\{\alpha I\right\},\alpha\in\mathbb{C}\setminus\{0\}$. + +#### Corollary of conformality + +If $\phi$ is a non-constant linear fractional transformation, then $\phi$ is conformal. + +Proof: + +Know that $\phi_0\circ\phi(\zeta)=\zeta$, + +Then $\phi(\zeta)=\phi_0^{-1}\circ\phi\circ\phi_0(\zeta)$. + +So $\phi(\zeta)=\frac{a\zeta+b}{c\zeta+d}$. + +$\phi:\mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$ which gives $\phi(\infty)=\frac{a}{c}$ and $\phi(-\frac{d}{c})=\infty$. + +So, $\phi$ is conformal. + +EOP + +#### Proposition 3.4 of Fixed points + +Any non-constant linear fractional transformation except the identity transformation has 1 or 2 fixed points. + +Proof: + +Let $\phi(\zeta)=\frac{a\zeta+b}{c\zeta+d}$. + +Case 1: $c=0$ + +Then $\infty$ is a fixed point. + +Case 2: $c\neq 0$ + +Then $\phi(\zeta)=\frac{a\zeta+b}{c\zeta+d}$. + +The solution of $\phi(\zeta)=\zeta$ is $c\zeta^2+(d-a)\zeta-b=0$. + +Such solutions are $\zeta=\frac{-(d-a)\pm\sqrt{(d-a)^2+4bc}}{2c}$. + +So, $\phi$ has 1 or 2 fixed points. + +EOP + +#### Proposition 3.5 of triple transitivity + +If $\zeta_1,\zeta_2,\zeta_3\in\mathbb{C}P^1$ are distinct, then there exists a non-constant linear fractional transformation $\phi$ such that $\phi(\zeta_1)=\zeta_2$ and $\phi(\zeta_3)=\infty$. + +Proof as homework. + +#### Theorem 3.8 Preservation of clircles + +We defined clircle to be a circle or a line. + +If $\phi$ is a non-constant linear fractional transformation, then $\phi$ maps clircles to clircles. + +Proof: + +Continue on next lecture. diff --git a/pages/Math416/_meta.js b/pages/Math416/_meta.js index a1fc1b3..1fd32f5 100644 --- a/pages/Math416/_meta.js +++ b/pages/Math416/_meta.js @@ -7,4 +7,5 @@ export default { Math416_L2: "Complex Variables (Lecture 2)", Math416_L3: "Complex Variables (Lecture 3)", Math416_L4: "Complex Variables (Lecture 4)", + Math416_L5: "Complex Variables (Lecture 5)", }