Update Math401_P1_3.md

This commit is contained in:
Trance-0
2025-07-17 11:17:39 -05:00
parent 664fe5197f
commit 328848433a

View File

@@ -116,9 +116,69 @@ $$
Hardcore computing may generates the bound but M. Gromov did not make the detailed explanation here. Hardcore computing may generates the bound but M. Gromov did not make the detailed explanation here.
#### Detail proof by Takashi Shioya > Detail proof by Takashi Shioya.
>
> The central idea is to draw the connection between the given three topological spaces, $S^{2n+1}$, $CP^n$ and $\mathbb{R}$.
First, we need to introduce the following distribution and lemmas/theorems:
**OBSERVATION**
consider the orthogonal projection from $\mathbb{R}^{n+1}$, the space where $S^n$ is embedded, to $\mathbb{R}^k$, we denote the restriction of the projection as $\pi_{n,k}:S^n(\sqrt{n})\to \mathbb{R}^k$. Note that $\pi_{n,k}$ is a 1-Lipschitz function (projection will never increase the distance between two points).
We denote the normalized Riemannian volume measure on $S^n(\sqrt{n})$ as $\sigma^n(\cdot)$, and $\sigma^n(S^n(\sqrt{n}))=1$.
#### Definition of Gaussian measure on $\mathbb{R}^k$
We denote the Gaussian measure on $\mathbb{R}^k$ as $\gamma^k$.
$$
d\gamma^k(x)\coloneqq\frac{1}{\sqrt{2\pi}^k}\exp(-\frac{1}{2}\|x\|^2)dx
$$
$x\in \mathbb{R}^k$, $\|x\|^2=\sum_{i=1}^k x_i^2$ is the Euclidean norm, and $dx$ is the Lebesgue measure on $\mathbb{R}^k$.
Basically, you can consider the Gaussian measure as the normalized Lebesgue measure on $\mathbb{R}^k$ with standard deviation $1$.
#### Maxwell-Boltzmann distribution law
> It is such a wonderful fact for me, that the projection of $n+1$ dimensional sphere with radius $\sqrt{n}$ to $\mathbb{R}^k$ is a Gaussian distribution as $n\to \infty$.
For any natural number $k$,
$$
\frac{d(\pi_{n,k})_*\sigma^n(x)}{dx}\to \frac{d\gamma^k(x)}{dx}
$$
where $(\pi_{n,k})_*\sigma^n$ is the push-forward measure of $\sigma^n$ by $\pi_{n,k}$.
In other words,
$$
(\pi_{n,k})_*\sigma^n\to \gamma^k\text{ weakly as }n\to \infty
$$
<details>
<summary>Proof</summary>
We denote the $n$ dimensional volume measure on $\mathbb{R}^k$ as $\operatorname{vol}_k$.
Observe that $\pi_{n,k}^{-1}(x),x\in \mathbb{R}^k$ is isometric to $S^{n-k}(\sqrt{n-\|x\|^2})$, that is, for any $x\in \mathbb{R}^k$, $\pi_{n,k}^{-1}(x)$ is a sphere with radius $\sqrt{n-\|x\|^2}$ (by the definition of $\pi_{n,k}$).
So,
$$
\begin{aligned}
\frac{d(\pi_{n,k})_*\sigma^n(x)}{dx}&=\frac{\operatorname{vol}_{n-k}(\pi_{n,k}^{-1}(x))}{\operatorname{vol}_k(S^n(\sqrt{n}))}\\
&=\frac{(n-\|x\|^2)^{\frac{n-k}{2}}}{\int_{\|x\|\leq \sqrt{n}}(n-\|x\|^2)^{\frac{n-k}{2}}dx}\\
\end{aligned}
$$
as $n\to \infty$.
$(n-\|x\|^2)^{\frac{n-k}{2}}=\left(n(1-\frac{\|x\|^2}{n})\right)^{\frac{n-k}{2}}\to n^{\frac{n-k}{2}}\exp(-\frac{\|x\|^2}{2})$
</details>
## References ## References