diff --git a/content/CSE5313/CSE5313_L5.md b/content/CSE5313/CSE5313_L5.md
new file mode 100644
index 0000000..147715e
--- /dev/null
+++ b/content/CSE5313/CSE5313_L5.md
@@ -0,0 +1,272 @@
+# CSE5313 Coding and information theory for data science (Lecture 5)
+
+## Recap
+
+### Group
+
+1. Closure: $\forall a,b\in G, a\cdot b\in G$.
+2. Associativity: $\forall a,b,c\in G, (a\cdot b)\cdot c=a\cdot (b\cdot c)$.
+3. Identity: $\exists e\in G, \forall a\in G, a\cdot e=e\cdot a=a$.
+4. Inverses: $\forall a\in G, \exists a^{-1}\in G, a\cdot a^{-1}=a^{-1}\cdot a=e$.
+
+May not be commutative (group of invertible matrices).
+
+### Order of element in group
+
+$a\in G$ is of order $k$ if $a^k=e$ and $k$ is the smallest positive integer such that $a^k=e$.
+
+If $a^n=e$, then $O(a)\mid n$.
+
+### Generator of group
+
+$a\in G$ is a generator of $G$ if $\mathcal{O}(a)=|G|$. (for finite groups)
+
+For infinite groups, $\langle a\rangle=G$.
+
+
+Example
+
+$(\mathbb{Z}_n,+)$ has generator $1$.
+
+$(\mathbb{Z}_8^*,\cdot)$ has generator $3$. (Recall $\mathbb{Z}_8^*=\{x\in\mathbb{Z}_8:gcd(x,8)=1\}$. for multiplicative inverse.)
+
+
+
+## New content
+
+### Subgroups
+
+A subgroup $H$ of $G$ is a nonempty subset of $G$ that is itself a group under the operation of $G$.
+
+Denoted as $H\leq G$.
+
+
+Example
+
+$(\mathbb{Z}_6,+)$ has subgroups $H=(\{0,2,4\},+)$.
+
+Only need to check three:
+
+- non-empty
+- closure
+- finite
+
+
+
+#### Theorem for finite subgroups
+
+If $H$ is finite, non-empty, and closed under the operation of $G$, then $H$ is a subgroup of $G$.
+
+### Equivalence relations
+
+An equivalence relation $\sim$ on a set $X$ is a relation that is
+
+- reflexive: $\forall x\in X, x\sim x$
+- symmetric: $\forall x,y\in X, x\sim y\implies y\sim x$
+- transitive: $\forall x,y,z\in X, x\sim y\text{ and } y\sim z\implies x\sim z$
+
+
+Example
+
+Let $S$ be points on land, and $a\sim b$ if $a$ and $b$ are connected by land.
+
+
+
+#### Equivalence classes
+
+An equivalence relation on $S$ partitions $S$ into equivalence classes.
+
+Equivalence classes are:
+
+- Disjoint
+- Cover $S$
+
+### Cosets
+
+Let $G$ be a group and $H$ its subgroup.
+
+The coset of $H$ in $G$ is the equivalence class under congruence modulo $H$.
+
+Alternatively, (more convenient)
+
+$$
+\{h+a|h\in H,a\in G\}
+$$
+
+
+Example
+
+Let $G=(\mathbb{Z}_6,+)$ and $H=(\{0,2,4\},+)$.
+
+Define the equivalence relation on $G$ as:
+
+$a\sim b$ if $a+b^{-1}\in H$ (congruence modulo $H$)
+
+To find the equivalence classes of this relation for $G=(\mathbb{Z}_6,+)$ and $H=(\{0,2,4\},+)$, we have:
+
+- $0\sim 0, 0\sim 2, 0\sim 4$
+- $1\sim 1, 1\sim 3, 1\sim 5$
+
+
+
+### Lagrange's theorem
+
+For every finite group $G$, the order of every subgroup $H$ of $G$ divides the order of $G$.
+
+#### Corollary of Lagrange's theorem
+
+If $|G|$ is prime, then $G$ is cyclic.
+
+
+Proof
+
+Let $A=\{a^0=e,a,a^2,\cdots,a^{|G|-1}\}$.
+
+$A$ is a cyclic subgroup of $G$. of order at least two.
+
+Then $|A|||G|$.
+
+So $|A|=|G|$.
+
+So $A=G$.
+
+So $G$ is cyclic.
+
+
+
+### Additive group of a field
+
+Any finite field has two types groups:
+
+- Additive group: $(\mathbb{F},+)$
+- Multiplicative group: $(\mathbb{F}^*,\cdot)$
+
+The "integer" of $F$ is:
+
+$$
+\{a\in F|1^k=a,k\in\mathbb{N}\}
+$$
+
+The "characteristic" of $F$ is:
+
+- The order of $1$ in additive group
+- Number of times that $1$ is added to itself to get $0$
+- Denoted by $\operatorname{c}(F)$.
+
+
+Example
+
+$\operatorname{c}(\mathbb{Z}_7)=7$.
+
+$\operatorname{c}(\mathbb{R})=0$.
+
+$\operatorname{c}(\mathbb{Z}_2[x] \mod x^2+x+1)=2$.
+
+
+
+#### Theorem field characteristic is prime
+
+If $\operatorname{c}(F)>0$, then $\operatorname{c}(F)$ is prime.
+
+
+Proof
+
+Suppose $\operatorname{c}(F)=mn$, then $0=\sum_{i=0}^{m-1}1\cdot\sum_{j=0}^{n-1}1=0$.
+
+So $m$ or $n$ must be $0$.
+
+So $\operatorname{c}(F)$ is prime.
+
+
+
+#### Theorem of linear power over additive group with prime characteristic
+
+Let $F$ be a field with characteristic $p>0$, then operation $^p$ is linear.
+
+That is, $(a+b)^p=a^p+b^p$.
+
+
+Proof
+
+$$
+(a+b)^p=\sum_{i=0}^p \binom{p}{i} a^i b^{p-i}
+$$
+
+$$
+\begin{aligned}
+\binom{p}{i}&=\frac{p!}{i!(p-i)!}\\
+&=\frac{p(p-1)\cdots(p-i+1)}{i(i-1)\cdots 1}
+\end{aligned}
+$$
+
+> Informally, $p$ divides the numerator but not the denominator. So the whole fraction is an integer.
+
+Since $\binom{p}{i}$ is an integer of $F$ except for $i=0$ and $i=p$, we have $\binom{p}{i}=0$ for $i=1,\cdots,p-1$.
+
+So $(a+b)^p=a^p+b^p$.
+
+
+
+### Multiplicative group of a field
+
+Every element in a multiplicative group of a field is cyclic.
+
+Corollary:
+
+- Every finite field has a generator, called a primitive element.
+- This is an element $\gamma$ such that $\mathbb{F}^*=\langle \gamma\rangle$.
+- Every element of $\mathbb{F}^*$ is a power of $\gamma$.
+
+
+Example
+
+Build $F_16=\mathbb{Z}_2[\zeta] \mod \zeta^4+\zeta+1$.
+
+The elements are:
+
+| Power of $\zeta$ | Element | As vector in $\mathbb{Z}_2^4$ |
+|---|---|---|
+| 0 | 0 | (0,0,0,0) |
+| 1 | 1 | (1,0,0,0) |
+| 2 | $\zeta$ | (0,1,0,0) |
+| 3 | $\zeta^2$ | (0,0,1,0) |
+| 4 | $\zeta^3$ | (0,0,0,1) |
+| 5 | $\zeta+1$ | (1,1,0,0) |
+| 6 | $\zeta^2+\zeta$ | (0,1,1,0) |
+| 7 | $\zeta^3+\zeta^2$ | (0,0,1,1) |
+| 8 | $\zeta^3+\zeta^2+1$ | (1,1,1,0) |
+
+The primitive element is $\zeta$.
+
+### Vector spaces and subspaces over finite fields
+
+$\mathbb{F}^n$ is a vector space over $\mathbb{F}$.
+
+With point-wise vector addition and scalar multiplication.
+
+
+Example
+
+$\mathbb{F}_2^4$ is a vector space over $\mathbb{F}_2$.
+
+Let $v=\begin{pmatrix}
+1 & 1 & 1 & 1
+\end{pmatrix}$
+
+Then $v$ is a vector in $\mathbb{F}_2^4$ that's "orthogonal" to itself.
+
+$v\cdot v=1+1+1+1=4=0$ in $\mathbb{F}_2$.
+
+In general field, the dual space and space may intersect non-trivially.
+
+
+
+Let $V$ be a subspace of $\mathbb{F}^n$.
+
+$V$ is a subgroup of $\mathbb{F}^n$ under vector addition.
+
+- Apply the theorem: If $H$ is finite, non-empty, and closed under the operation of $G$, then $H$ is a subgroup of $G$.
+
+> Is every subgroup of $\mathbb{F}^n$ a subspace?
+
+Cosets in this definition are called Affine subspaces.