From 3483618c073645304791bf8907eaa68b9a211369 Mon Sep 17 00:00:00 2001 From: Trance-0 <60459821+Trance-0@users.noreply.github.com> Date: Fri, 3 Oct 2025 11:52:56 -0500 Subject: [PATCH] Update Math4201_L17.md --- content/Math4201/Math4201_L17.md | 85 ++++++++++++++++++++++++++++++++ 1 file changed, 85 insertions(+) diff --git a/content/Math4201/Math4201_L17.md b/content/Math4201/Math4201_L17.md index 9f376c2..fa181d8 100644 --- a/content/Math4201/Math4201_L17.md +++ b/content/Math4201/Math4201_L17.md @@ -1,2 +1,87 @@ # Math4201 Topology I (Lecture 17) +## Quotient topology + +How can we define topologies on the space obtained points in a topological space? + +### Quotient map + +Let $(X,\mathcal{T})$ be a topological space. $X^*$ is a set and $q:X\to X^*$ is a surjective map. + +The quotient topology on $X^*$ is defined as follows: + +$$ +\mathcal{T}^* = \{U\subseteq X^*\mid q^{-1}(U)\in \mathcal{T}\} +$$ + +$U\subseteq X^*$ is open if and only if $q^{-1}(U)$ is open in $X$. + +In particular, $q$ is continuous map. + +#### Definition of quotient map + +$q:X\to X^*$ defined above is called a **quotient map**. + +#### Definition of quotient space + +$(X^*,\mathcal{T}^*)$ is called the **quotient space** of $X$ by $q$. + +### Typical way of constructing a surjective map + +#### Equivalence relation + +$\sim$ is a subset of $X\times X$ satisfying: + +- reflexive: $\forall x\in X, x\sim x$ +- symmetric: $\forall x,y\in X, x\sim y\implies y\sim x$ +- transitive: $\forall x,y,z\in X, x\sim y\text{ and } y\sim z\implies x\sim z$ + +#### Equivalence classes + +Check equivalence relation. + +For $x\in X$, the equivalence class of $x$ is denoted as $[x]\coloneqq \{y\in X\mid y\sim x\}$. + +$X^*$ is the set of all equivalence classes on $X$. + +$q:X\to X^*$ is defined as $q(x)=[x]$ will be a surjective map. + +
+Example of surjective maps and their quotient spaces + +Let $X=\mathbb{R}^2$ and $(s,t)\sim (s',t')$ if and only if $s-s'$ and $t-t'$ are both integers. + +This space as a topological space is homeomorphic to the torus. + +--- + +Let $X=\{(s,t)\in \mathbb{R}^2\mid s^2+t^2\leq 1\}$ and $(s,t)\sim (s',t')$ if and only if $s^2+t^2$ and $s'^2+t'^2$. with subspace topology as a subspace of $\mathbb{R}^2$. + +This space as a topological space is homeomorphic to the spherical shell $S^2$. + +
+ +We will show that the quotient topology is a topology on $X^*$. + +
+Proof + +We need to show that the quotient topology is a topology on $X^*$. + +1. $\emptyset, X^*$ are open in $X^*$. + +$\emptyset, X^*$ are open in $X^*$ because $q^{-1}(\emptyset)=q^{-1}(X^*)=\emptyset$ and $q^{-1}(X^*)=X$ are open in $X$. + +2. $\mathcal{T}^*$ is closed with respect to arbitrary unions. + +$$ +q^{-1}(\bigcup_{\alpha \in I} U_\alpha)=\bigcup_{\alpha \in I} q^{-1}(U_\alpha) +$$ + +3. $\mathcal{T}^*$ is closed with respect to finite intersections. + +$$ +q^{-1}(\bigcap_{\alpha \in I} U_\alpha)=\bigcap_{\alpha \in I} q^{-1}(U_\alpha) +$$ + +
\ No newline at end of file