From 35de98345145a070acdc124100f8da6d58342954 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Wed, 15 Jan 2025 15:45:35 -0600 Subject: [PATCH] Update Math416_L1.md what? --- pages/Math416/Math416_L1.md | 135 +++++++++++++++++++++++++++++++++++- 1 file changed, 134 insertions(+), 1 deletion(-) diff --git a/pages/Math416/Math416_L1.md b/pages/Math416/Math416_L1.md index 4e369bf..85bcdb8 100644 --- a/pages/Math416/Math416_L1.md +++ b/pages/Math416/Math416_L1.md @@ -1,3 +1,136 @@ # Lecture 1 -## \ No newline at end of file +## Chapter 1: Complex Numbers + +### Preface + +I don't know what happened to the first class. I will try to rewrite the notes from my classmates here. + +#### Rigidity + +Integral is preserved for any closed path. + +#### Group + +A set with a multiplication operator. $(G,\cdot)$ such that: for all $a,b,c\in G$: + +1. $a\cdot b\in G$ +2. $a\cdot (b\cdot c)=(a\cdot b)\cdot c$ +3. $a\cdot 1=a$ +4. $a\cdot a^{-1}=1$ + +#### Ring + +A group with two operations: addition and multiplication. $(R,+,\cdot)$ such that: for all $a,b,c\in R$: + +1. Commutative under addition: $a+b=b+a$ +2. Associative under multiplication: $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ +3. Distributive under addition: $a\cdot (b+c)=a\cdot b+a\cdot c$ + +Example: + +$\{a+\sqrt{6}b\mid a,b\in \mathbb{Z}\}$ is a ring + +#### Definition 1.1 + +the complex number is defined to be the set $\mathbb{C}$ of ordered pairs $(x,y)$ with $x,y\in \mathbb{R}$ and the operations: + +- Addition: $(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2)$ +- Multiplication: $(x_1,y_1)(x_2,y_2)=(x_1x_2-y_1y_2,x_1y_2+x_2y_1)$ + +#### Axiom 1.2 + +The operation of addition and multiplication on $\mathbb{C}$ satisfies the following conditions (The field axioms): + +For all $z_1,z_2,z_3\in \mathbb{C}$: + +1. $z_1+z_2=z_2+z_1$ (commutative law of addition) +2. $(z_1+z_2)+z_3=z_1+(z_2+z_3)$ (associative law of addition) +3. $z_1\cdot z_2=z_2\cdot z_1$ (commutative law of multiplication) +4. $(z_1\cdot z_2)\cdot z_3=z_1\cdot (z_2\cdot z_3)$ (associative law of multiplication) +5. $z_1\cdot (z_2+z_3)=z_1\cdot z_2+z_1\cdot z_3$ (distributive law) +6. There exists an additive identity element $0=(0,0)$ such that $z+0=z$ for all $z\in \mathbb{C}$. +7. There exists a multiplicative identity element $1=(1,0)$ such that $z\cdot 1=z$ for all $z\in \mathbb{C}$. +8. There exists an additive inverse $-z=(-x,-y)$ for all $z=(x,y)\in \mathbb{C}$ such that $z+(-z)=0$. +9. There exists a multiplicative inverse $z^{-1}=\left(\frac{x}{x^2+y^2},-\frac{y}{x^2+y^2}\right)$ for all $z=(x,y)\in \mathbb{C}$ such that $z\cdot z^{-1}=1$. + +$$ +(a,b)^{-1}=\left(\frac{a}{a^2+b^2},-\frac{b}{a^2+b^2}\right) +$$ + +#### Embedding of $\mathbb{R}$ in $\mathbb{C}$ 1.3 + +Let $z=x+iy\in \mathbb{C}$ where $a,b\in \mathbb{R}$. + +- $x$ is called the real part of $z$ and +- $y$ is called the imaginary part of $z$. +- $|z|=\sqrt{x^2+y^2}$ is called the absolute value or modulus of $z$. +- The angle between the positive real axis and the line segment from $0$ to $z$ is called the argument of $z$ and is denoted by $\theta$ (argument of $z$). +- $\overline{z}=x-iy$ is called the conjugate of $z$. ($z\cdot \overline{z}=|z|^2$) +- $z_1+z_2=(x_1+x_2,y_1+y_2)$ (vector addition) + +#### Lemma 1.3 + +$$ +|z_1z_2|=|z_1||z_2| +$$ + +#### Theorem 1.5 (Triangle Inequality) + +$$ +|z_1+z_2|\leq |z_1|+|z_2| +$$ + +Proof: + +Geometrically, the triangle inequality states that the sum of the lengths of any two sides of a triangle is greater than the length of the third side. + +Algebraically, + +$$ +\begin{aligned} +(|z_1+z_2|)^2-|z_1+z_2|^2&=|z_1+z_2|^2-2|z_1+z_2|-(z_1+z_2)(\overline{z_1}+\overline{z_2})\\ +&=|z_1|^2+|z_2|^2+2|z_1||z_2|-(|z_1|^2+|z_2|^2+\overline{z_1}z_2+\overline{z_2}z_1)\\ +&=2|z_1||z_2|-2Re(\overline{z_1}z_2)\\ +&=2(|z_1||z_2|-|z_1z_2|)\\ +&\geq 0 +\end{aligned} +$$ + +Suppose $2(|z_1||z_2|-|z_1z_2|)=0$, and $\overline{z_1}z_2$ is a non-negative real number $c$, then $|z_1||z_2|=|z_1z_2|$... + +> What is the use of this? + +Let $\arg(z)=\theta\in (-\pi,\pi]$, $z_1=r_1(\cos\theta_1+i\sin\theta_1)$, $z_2=r_2(\cos\theta_2+i\sin\theta_2)$. + +$$ +z_1z_2=r_1r_2[cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2)] +$$ + +(Define $\text{cis}(\theta)=\cos\theta+i\sin\theta$) + +### De Howtes' Formula + +Let $z=r\text{cis}(\theta)$, then + +$\forall n\in \mathbb{Z}$: + +$$ +z^n=r^n\text{cis}(n\theta) +$$ + +Proof: + +For $n=0$, $z^0=1=1\text{cis}(0)$. + +For $n=-1$, $z^{-1}=\frac{1}{z}=\frac{1}{r}\text{cis}(-\theta)=\frac{1}{r}(cos(-\theta)+i\sin(-\theta))$. + +Application: + +$$ +\begin{aligned} +(\text{cis}(\theta))^3&=\text{cis}(3\theta)\\ +&=\cos(3\theta)+i\sin(3\theta)\\ +&=cos^3(\theta)-3cos(\theta)sin^2(\theta)+i(3cos^2(\theta)sin(\theta)-sin^3(\theta))\\ +\end{aligned} +$$