update
This commit is contained in:
337
pages/Math401/Math401_T2.md
Normal file
337
pages/Math401/Math401_T2.md
Normal file
@@ -0,0 +1,337 @@
|
||||
# Topic 2: Finite-dimensional Hilbert spaces
|
||||
|
||||
Recall the complex number is a tuple of two real numbers, $z=(a,b)$ with addition and multiplication defined by
|
||||
|
||||
$$
|
||||
(a,b)+(c,d)=(a+c,b+d)
|
||||
$$
|
||||
|
||||
$$
|
||||
(a,b)\cdot(c,d)=(ac-bd,ad+bc)
|
||||
$$
|
||||
|
||||
or in polar form,
|
||||
|
||||
$$
|
||||
z=re^{i\theta}=r(\cos\theta+i\sin\theta)
|
||||
$$
|
||||
|
||||
where $r=\sqrt{a^2+b^2}=\sqrt{z\overline{z}}$ and $\theta=\tan^{-1}(b/a)$.
|
||||
|
||||
The complex conjugate of $z$ is $\overline{z}=(a,-b)$.
|
||||
|
||||
## Section 1: Finite-dimensional Complex Vector Spaces
|
||||
|
||||
Here, we use the field $\mathbb{C}$ of complex numbers. or the field $\mathbb{R}$ of real numbers as the field $\mathbb{F}$ we are going to encounter.
|
||||
|
||||
### Definition of vector space
|
||||
|
||||
A vector space $\mathscr{V}$ over a field $\mathbb{F}$ is a set equipped with an **addition** and a **scalar multiplication**, satisfying the following axioms:
|
||||
|
||||
1. Addition is associative and commutative. For all $u,v,w\in \mathscr{V}$,
|
||||
|
||||
Associativity:
|
||||
$$
|
||||
(u+v)+w=u+(v+w)
|
||||
$$
|
||||
|
||||
Commutativity:
|
||||
|
||||
$$
|
||||
u+v=v+u
|
||||
$$
|
||||
|
||||
2. Additive identity: There exists an element $0\in \mathscr{V}$ such that $v+0=v$ for all $v\in \mathscr{V}$.
|
||||
|
||||
3. Additive inverse: For each $v\in \mathscr{V}$, there exists an element $-v\in \mathscr{V}$ such that $v+(-v)=0$.
|
||||
|
||||
4. Multiplicative identity: There exists an element $1\in \mathbb{F}$ such that $v\cdot 1=v$ for all $v\in \mathscr{V}$.
|
||||
|
||||
5. Multiplicative inverse: For each $v\in \mathscr{V}$ and $c\in \mathbb{F}$, there exists an element $c^{-1}\in \mathbb{F}$ such that $v\cdot c^{-1}=1$.
|
||||
|
||||
6. Distributivity: For all $u,v\in \mathscr{V}$ and $c,d\in \mathbb{F}$,
|
||||
|
||||
$$
|
||||
c(u+v)=cu+cv
|
||||
$$
|
||||
|
||||
A vector is an ordered pair of elements over the field $\mathbb{F}$.
|
||||
|
||||
If we consider $\mathbb{F}=\mathbb{C}^n$, $n\in \mathbb{N}$, then $u=(a_1,a_2,\cdots,a_n), v=(b_1,b_2,\cdots,b_n)\in \mathbb{C}^n$ are vectors.
|
||||
|
||||
The addition and scalar multiplication are defined by
|
||||
|
||||
$$
|
||||
u+v=(a_1+b_1,a_2+b_2,\cdots,a_n+b_n)
|
||||
$$
|
||||
|
||||
$$
|
||||
cu=(ca_1,ca_2,\cdots,ca_n)
|
||||
$$
|
||||
|
||||
$c\in \mathbb{C}$.
|
||||
|
||||
The matrix transpose is defined by
|
||||
|
||||
$$
|
||||
u^T=(a_1,a_2,\cdots,a_n)^T=\begin{pmatrix}
|
||||
a_1 \\
|
||||
a_2 \\
|
||||
\vdots \\
|
||||
a_n
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
The complex conjugate transpose is defined by
|
||||
|
||||
$$
|
||||
u^*=(a_1,a_2,\cdots,a_n)^*=\begin{pmatrix}
|
||||
\overline{a_1} \\
|
||||
\overline{a_2} \\
|
||||
\vdots \\
|
||||
\overline{a_n}
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
> In physics, the complex conjugate is sometimes denoted by $z^*$ instead of $\overline{z}$.
|
||||
> The complex conjugate transpose is sometimes denoted by $u^\dagger$ instead of $u^*$.
|
||||
|
||||
### Hermitian inner product and norms
|
||||
|
||||
On $\mathbb{C}^n$, the Hermitian inner product is defined by
|
||||
|
||||
$$
|
||||
\langle u,v\rangle=\sum_{i=1}^n \overline{u_i}v_i
|
||||
$$
|
||||
|
||||
The norm is defined by
|
||||
|
||||
$$
|
||||
\|u\|=\sqrt{\langle u,u\rangle}
|
||||
$$
|
||||
|
||||
#### Definition of Inner product
|
||||
|
||||
Let $\mathscr{H}$ be a complex vector space. An inner product on $\mathscr{H}$ is a function $\langle \cdot, \cdot \rangle: \mathscr{H}\times \mathscr{H}\to \mathbb{C}$ satisfying the following axioms:
|
||||
|
||||
1. For each $u\in \mathscr{H}$, $v\mapsto \langle u,v\rangle$ is a linear map.
|
||||
|
||||
$$
|
||||
\langle u,av+bw\rangle=a\langle u,v\rangle+b\langle u,w\rangle
|
||||
$$
|
||||
|
||||
For all $u,v,w\in \mathscr{H}$ and $a,b\in \mathbb{C}$.
|
||||
|
||||
2. For all $u,v\in \mathscr{H}$, $\langle u,v\rangle=\overline{\langle v,u\rangle}$.
|
||||
|
||||
$u\mapsto \langle u,v\rangle$ is a conjugate linear map.
|
||||
|
||||
3. $\langle u,u\rangle\geq 0$ and $\langle u,u\rangle=0$ if and only if $u=0$.
|
||||
|
||||
#### Definition of norm
|
||||
|
||||
Let $\mathscr{H}$ be a complex vector space. A norm on $\mathscr{H}$ is a function $\|\cdot\|: \mathscr{H}\to \mathbb{R}$ satisfying the following axioms:
|
||||
|
||||
1. For all $u\in \mathscr{H}$, $\|u\|\geq 0$ and $\|u\|=0$ if and only if $u=0$.
|
||||
|
||||
2. For all $u\in \mathscr{H}$ and $c\in \mathbb{C}$, $\|cu\|=|c|\|u\|$.
|
||||
|
||||
3. Triangle inequality: For all $u,v\in \mathscr{H}$, $\|u+v\|\leq \|u\|+\|v\|$.
|
||||
|
||||
#### Definition of inner product space
|
||||
|
||||
A complex vector space $\mathscr{H}$ with an inner product is called a **Hilbert space**.
|
||||
|
||||
#### Cauchy-Schwarz inequality
|
||||
|
||||
For all $u,v\in \mathscr{H}$,
|
||||
|
||||
$$
|
||||
|\langle u,v\rangle|\leq \|u\|\|v\|
|
||||
$$
|
||||
|
||||
#### Parallelogram law
|
||||
|
||||
For all $u,v\in \mathscr{H}$,
|
||||
|
||||
$$
|
||||
\|u+v\|^2+\|u-v\|^2=2(\|u\|^2+\|v\|^2)
|
||||
$$
|
||||
|
||||
#### Polarization identity
|
||||
|
||||
For all $u,v\in \mathscr{H}$,
|
||||
|
||||
$$
|
||||
\langle u,v\rangle=\frac{1}{4}(\|u+v\|^2-\|u-v\|^2+i\|u+iv\|^2-i\|u-iv\|^2)
|
||||
$$
|
||||
|
||||
#### Additional definitions
|
||||
|
||||
Let $u,v\in \mathscr{H}$.
|
||||
|
||||
$||v||$ is the length of $v$.
|
||||
|
||||
$v$ is a unit vector if $\|v\|=1$.
|
||||
|
||||
$u,v$ are orthogonal if $\langle u,v\rangle=0$.
|
||||
|
||||
#### Definition of orthonormal basis
|
||||
|
||||
A set of vectors $\{e_1,e_2,\cdots,e_n\}$ in a Hilbert space $\mathscr{H}$ is called an orthonormal basis if
|
||||
|
||||
1. $\langle e_i,e_j\rangle=\delta_{ij}$ for all $i,j\in \{1,2,\cdots,n\}$.
|
||||
|
||||
$$
|
||||
\delta_{ij}=\begin{cases}
|
||||
1 & \text{if } i=j \\
|
||||
0 & \text{if } i\neq j
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
2. $n=\dim \mathscr{H}$.
|
||||
|
||||
### Subspaces and orthonormal bases
|
||||
|
||||
#### Definition of subspace
|
||||
|
||||
A subset $\mathscr{W}$ of a vector space $\mathscr{V}$ is a subspace if it is closed under addition and scalar multiplication.
|
||||
|
||||
#### Definition of orthogonal complement
|
||||
|
||||
Let $E$ be a subset of a Hilbert space $\mathscr{H}$. The orthogonal complement of $E$ is the set of all vectors in $\mathscr{H}$ that are orthogonal to every vector in $E$.
|
||||
|
||||
$$
|
||||
E^\perp=\{v\in \mathscr{H}: \langle v,w\rangle=0 \text{ for all } w\in E\}
|
||||
$$
|
||||
|
||||
#### Definition of orthogonal projection
|
||||
|
||||
Let $E$ be a $m$-dimensional subspace of a Hilbert space $\mathscr{H}$. An orthogonal projection of $E$ is a linear map $P_E: \mathscr{H}\to E$
|
||||
|
||||
$$
|
||||
P_E(v)=\sum_{i=1}^m \langle v,e_i\rangle e_i
|
||||
$$
|
||||
|
||||
#### Definition of orthonormal direct sum
|
||||
|
||||
A inner product space $\mathscr{H}$ is the direct sum of $E_1,E_2,\cdots,E_n$ if
|
||||
|
||||
$$
|
||||
\mathscr{H}=E_1\oplus E_2\oplus \cdots \oplus E_n
|
||||
$$
|
||||
|
||||
and $E_i\cap E_j=\{0\}$ for all $i\neq j$.
|
||||
|
||||
That is, $\forall v\in \mathscr{H}$, there exists a unique $v_i\in E_i$ such that $v=v_1+v_2+\cdots+v_n$.
|
||||
|
||||
#### Definition of meet and join of subspaces
|
||||
|
||||
Let $E$ and $F$ be two subspaces of a Hilbert space $\mathscr{H}$. The meet of $E$ and $F$ is the subspace $\mathscr{H}$ such that
|
||||
|
||||
$$
|
||||
E\land F=E\cap F
|
||||
$$
|
||||
|
||||
The join of $E$ and $F$ is the subspace $\mathscr{H}$ such that
|
||||
|
||||
$$
|
||||
E\lor F=\{u+v: u\in E, v\in F\}
|
||||
$$
|
||||
|
||||
### Null space and range
|
||||
|
||||
#### Definition of null space
|
||||
|
||||
Let $A$ be a linear map from a vector space $\mathscr{V}$ to a vector space $\mathscr{W}$. The null space of $A$ is the set of all vectors in $\mathscr{V}$ that are mapped to the zero vector in $\mathscr{W}$.
|
||||
|
||||
$$
|
||||
\text{Null}(A)=\{v\in \mathscr{V}: Av=0\}
|
||||
$$
|
||||
|
||||
#### Definition of range
|
||||
|
||||
Let $A$ be a linear map from a vector space $\mathscr{V}$ to a vector space $\mathscr{W}$. The range of $A$ is the set of all vectors in $\mathscr{W}$ that are mapped from $\mathscr{V}$.
|
||||
|
||||
$$
|
||||
\text{Range}(A)=\{w\in \mathscr{W}: \exists v\in \mathscr{V}, Av=w\}
|
||||
$$
|
||||
|
||||
### Dual spaces and adjoints of linear maps\
|
||||
|
||||
#### Definition of linear map
|
||||
|
||||
A linear map $T: \mathscr{V}\to \mathscr{W}$ is a function that satisfies the following axioms:
|
||||
|
||||
1. Additivity: For all $u,v\in \mathscr{V}$ and $a,b\in \mathbb{F}$,
|
||||
|
||||
$$
|
||||
T(au+bv)=aT(u)+bT(v)
|
||||
$$
|
||||
|
||||
2. Homogeneity: For all $u\in \mathscr{V}$ and $a\in \mathbb{F}$,
|
||||
|
||||
$$
|
||||
T(au)=aT(u)
|
||||
$$
|
||||
|
||||
#### Definition of linear functionals
|
||||
|
||||
A linear functional $f: \mathscr{V}\to \mathbb{F}$ is a linear map from $\mathscr{V}$ to $\mathbb{F}$.
|
||||
|
||||
Here, $\mathbb{F}$ is the field of complex numbers.
|
||||
|
||||
#### Definition of dual space
|
||||
|
||||
Let $\mathscr{V}$ be a vector space over a field $\mathbb{F}$. The dual space of $\mathscr{V}$ is the set of all linear functionals on $\mathscr{V}$.
|
||||
|
||||
$$
|
||||
\mathscr{V}^*=\{f:\mathscr{V}\to \mathbb{F}: f\text{ is linear}\}
|
||||
$$
|
||||
|
||||
If $\mathscr{H}$ is a finite-dimensional Hilbert space, then $\mathscr{H}^*$ is isomorphic to $\mathscr{H}$.
|
||||
|
||||
Note $v\in \mathscr{H}\mapsto \langle v,\cdot\rangle\in \mathscr{H}^*$ is a conjugate linear isomorphism.
|
||||
|
||||
#### Definition of adjoint of a linear map
|
||||
|
||||
Let $T: \mathscr{V}\to \mathscr{W}$ be a linear map. The adjoint of $T$ is the linear map $T^*: \mathscr{W}\to \mathscr{V}$ such that
|
||||
|
||||
$$
|
||||
\langle Tv,w\rangle=\langle v,T^*w\rangle
|
||||
$$
|
||||
|
||||
for all $v\in \mathscr{V}$ and $w\in \mathscr{W}$.
|
||||
|
||||
#### Definition of self-adjoint operators
|
||||
|
||||
A linear operator $T: \mathscr{V}\to \mathscr{V}$ is self-adjoint if $T^*=T$.
|
||||
|
||||
#### Definition of unitary operators
|
||||
|
||||
A linear map $T: \mathscr{V}\to \mathscr{V}$ is unitary if $T^*T=TT^*=I$.
|
||||
|
||||
### Dirac's bra-ket notation
|
||||
|
||||
#### Definition of bra and ket
|
||||
|
||||
Let $\mathscr{H}$ be a Hilbert space. The bra-ket notation is a notation for vectors in $\mathscr{H}$.
|
||||
|
||||
$$
|
||||
\langle v|w\rangle
|
||||
$$
|
||||
|
||||
is the inner product of $v$ and $w$.
|
||||
|
||||
$$
|
||||
|v\rangle
|
||||
$$
|
||||
|
||||
is the vector (or linear map) $v$.
|
||||
|
||||
$$
|
||||
|u\rangle\langle v|
|
||||
$$
|
||||
|
||||
is a linear map from $\mathscr{H}$ to $\mathscr{H}$.
|
||||
|
||||
Reference in New Issue
Block a user