Merge branch 'main' of https://github.com/Trance-0/NoteNextra
This commit is contained in:
154
content/Math4201/Math4201_L16.md
Normal file
154
content/Math4201/Math4201_L16.md
Normal file
@@ -0,0 +1,154 @@
|
||||
# Math4201 Lecture 16 (Topology I)
|
||||
|
||||
## Continuous maps
|
||||
|
||||
The following maps are continuous:
|
||||
|
||||
$$
|
||||
F_+:\mathbb{R}\times \mathbb{R}\to \mathbb{R}, (x,y)\to x+y
|
||||
$$
|
||||
|
||||
$$
|
||||
F_-:\mathbb{R}\times \mathbb{R}\to \mathbb{R}, (x,y)\to x-y
|
||||
$$
|
||||
|
||||
$$
|
||||
F_\times:\mathbb{R}\times \mathbb{R}\to \mathbb{R}, (x,y)\to x\times y
|
||||
$$
|
||||
|
||||
$$
|
||||
F_\div:\mathbb{R}\times (\mathbb{R}\setminus \{0\})\to \mathbb{R}, (x,y)\to \frac{x}{y}
|
||||
$$
|
||||
|
||||
### Composition of continuous functions is continuous
|
||||
|
||||
Let $f,g:X\to \mathbb{R}$ be continuous functions. $X$ is topological space.
|
||||
|
||||
Then the following functions are continuous:
|
||||
|
||||
$$
|
||||
H:X\to \mathbb{R}\times \mathbb{R}, x\to (f(x),g(x))
|
||||
$$
|
||||
|
||||
Since the composition of continuous functions is continuous, we have
|
||||
|
||||
$$
|
||||
F_+\circ H:X\to \mathbb{R}, x\to f(x)+g(x)
|
||||
$$
|
||||
|
||||
$$
|
||||
F_-\circ H:X\to \mathbb{R}, x\to f(x)-g(x)
|
||||
$$
|
||||
|
||||
$$
|
||||
F_\times\circ H:X\to \mathbb{R}, x\to f(x)\times g(x)
|
||||
$$
|
||||
|
||||
are all continuous.
|
||||
|
||||
More over, if $g(x)\neq 0$ for all $x\in X$, then
|
||||
|
||||
$$
|
||||
F_\div\circ H:X\to \mathbb{R}, x\to \frac{f(x)}{g(x)}
|
||||
$$
|
||||
|
||||
is continuous following the similar argument.
|
||||
|
||||
### Defining metric for functions
|
||||
|
||||
#### Definition of bounded metric space
|
||||
|
||||
A metric space $(Y,d)$ is **bounded** if there is $M\in\mathbb{R}^{\geq 0}$ such that
|
||||
|
||||
$$
|
||||
\forall y,y'\in Y, d(y,y')<M
|
||||
$$
|
||||
|
||||
<details>
|
||||
<summary>Example of bounded metric space</summary>
|
||||
|
||||
If $(Y,d)$ is a bounded metric space, let $M$ be a positive constant, then $\overline{d}=\min\{M,d\}$ is a bounded metric space.
|
||||
|
||||
In fact, the metric topology by $d$ and $\overline{d}$ are the same. (proved in homeworks)
|
||||
|
||||
</details>
|
||||
|
||||
Let $X$ be a topological space. and $(Y,d)$ be a **bounded** metric space.
|
||||
|
||||
$$
|
||||
\operatorname{Map}(X,Y)\coloneq \{f:X\to Y|f \text{ is a map}\}
|
||||
$$
|
||||
|
||||
Define $\rho:\operatorname{Map}(X,Y)\times \operatorname{Map}(X,Y)\to \mathbb{R}$ by
|
||||
|
||||
$$
|
||||
\rho(f,g)=\sup_{x\in X} d(f(x),g(x))
|
||||
$$
|
||||
|
||||
#### Lemma space of map with metric defined is a metric space
|
||||
|
||||
$(\operatorname{Map}(X,Y),\rho)$ is a metric space.
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Proof is similar to showing that the square metric is a metric on $\mathbb{R}^n$.
|
||||
|
||||
$\rho(f,g)=0\implies \sup_{x\in X}(d(f(x),g(x)))=0$
|
||||
|
||||
Since $d(f(x),g(x))\geq 0$, this implies that $d(f(x),g(x))=0$ for all $x\in X$.
|
||||
|
||||
The triangle inequality of being metric for $\rho$ follows from the similar properties for $d$.
|
||||
|
||||
</details>
|
||||
|
||||
#### Lemma continuous maps form a closed subset of the space of maps
|
||||
|
||||
Let $(\operatorname{Map}(X,Y),\rho)$ be a metric space defined before.
|
||||
|
||||
and
|
||||
|
||||
$$
|
||||
Z=\{f:X\to Y|f \text{ is a continuous map}\}
|
||||
$$
|
||||
|
||||
Then $Z$ is a closed subset of $(\operatorname{Map}(X,Y),\rho)$.
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
We need to show that $\overline{Z}=Z$.
|
||||
|
||||
Since $\operatorname{Map}(X,Y)$ is a metric space, this is equivalent to showing that: $f_n:X\to Y\in Z$ continuous,
|
||||
|
||||
Which is to prove the uniform convergence,
|
||||
|
||||
$$
|
||||
f_n \to f \in \operatorname{Map}(X,Y)
|
||||
$$
|
||||
|
||||
Then we want to show that $f$ is continuous.
|
||||
|
||||
Let $B_r(y)$ be an arbitrary ball in $Y$, it suffices to show that $f^{-1}(B_r(y))$ is open in $X$.
|
||||
|
||||
Take $N$ to be large enough such that for $n\geq N$, we have
|
||||
|
||||
$$
|
||||
\rho(f_n(x), f(x)) < \frac{r}{3}
|
||||
$$
|
||||
|
||||
In particular, this holds for $n=N$. So we have
|
||||
|
||||
$$
|
||||
d(f_N(x), f(x)) < \frac{r}{3},\forall x\in X
|
||||
$$
|
||||
|
||||
Take $x_0\in f^{-1}(B_r(y))$, we'd like to show that there is an open ball around $x_0$ in $f^{-1}(B_r(y))$.
|
||||
|
||||
Since $f_N$ is continuous, $f^{-1}_N(B_{\frac{r}{3}}(y))$ is open in $X$.
|
||||
|
||||
$d(f(x_0), f(x_0))<\frac{r}{3}$
|
||||
|
||||
continue the proof in bonus video
|
||||
|
||||
</details>
|
||||
@@ -18,4 +18,5 @@ export default {
|
||||
Math4201_L13: "Topology I (Lecture 13)",
|
||||
Math4201_L14: "Topology I (Lecture 14)",
|
||||
Math4201_L15: "Topology I (Lecture 15)",
|
||||
Math4201_L16: "Topology I (Lecture 16)",
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user