From 47a27d198778fb541e2996dff6c807614064be9e Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Tue, 28 Oct 2025 11:55:11 -0500 Subject: [PATCH] restore search functionality --- app/layout.tsx | 2 +- content/CSE5313/CSE5313_L17.md | 84 ++++++++++++++++++++++++++++++++++ content/CSE5313/_meta.js | 1 + 3 files changed, 86 insertions(+), 1 deletion(-) create mode 100644 content/CSE5313/CSE5313_L17.md diff --git a/app/layout.tsx b/app/layout.tsx index 28041a8..867e026 100644 --- a/app/layout.tsx +++ b/app/layout.tsx @@ -84,7 +84,7 @@ export default async function RootLayout({ children }) { sidebar={{ defaultMenuCollapseLevel: 1 }} pageMap={pageMap} // TODO: fix algolia search - search={} + // search={} > {children} {/* SpeedInsights in vercel */} diff --git a/content/CSE5313/CSE5313_L17.md b/content/CSE5313/CSE5313_L17.md new file mode 100644 index 0000000..e98aeed --- /dev/null +++ b/content/CSE5313/CSE5313_L17.md @@ -0,0 +1,84 @@ +# CSE5313 Coding and information theory for data science (Lecture 17) + +## Shannon's coding Theorem + +**Shannon’s coding theorem**: For a discrete memoryless channel with capacity $C$, +every rate $R < C = \max_{x\in \mathcal{X}} I(X; Y)$ is achievable. + +### Computing Channel Capacity + +$X$: channel input (per 1 channel use), $Y$: channel output (per 1 channel use). + +Let the rate of the code be $\frac{\log_F |C|}{n}$ (or $\frac{k}{n}$ if it is linear). + +The Binary Erasure Channel (BEC): analog of BSC, but the bits are lost (not corrupted). + +Let $\alpha$ be the fraction of erased bits. + +### Corollary: The capacity of the BEC is $C = 1 - \alpha$. + +
+ +Proof + +$$ +\begin{aligned} +C&=\max_{x\in \mathcal{X}} I(X;Y)\\ +&=\max_{x\in \mathcal{X}} (H(Y)-H(Y|X))\\ +&=H(Y)-H(\alpha) +\end{aligned} +$$ + +Suppose we denote $Pr(X=1)\coloneqq p$. + +$Pr(Y=0)=Pr(X=0)Pr(no erasure)=(1-p)(1-\alpha)$ + +$Pr(Y=1)=Pr(X=1)Pr(no erasure)=p(1-\alpha)$ + +$Pr(Y=*)=\alpha$ + +So, + +$$ +\begin{aligned} +H(Y)&=H((1-p)(1-\alpha),p(1-\alpha),\alpha)\\ +&=(1-p)(1-\alpha)\log_2 ((1-p)(1-\alpha))+p(1-\alpha)\log_2 (p(1-\alpha))+\alpha\log_2 (\alpha)\\ +&=H(\alpha)+(1-\alpha)H(p) +\end{aligned} +$$ + +So $I(X;Y)=H(Y)-H(Y|X)=H(\alpha)+(1-\alpha)H(p)-H(\alpha)=(1-\alpha)H(p)$ + +So $C=\max_{x\in \mathcal{X}} I(X;Y)=\max_{p\in [0,1]} (1-\alpha)H(p)=(1-\alpha)$ + +So the capacity of the BEC is $C = 1 - \alpha$. + +
+ +### General interpretation of capacity + +Recall $I(X;Y)=H(Y)-H(Y|X)$. + +Edge case: + +- If $H(X|Y)=0$, then output $Y$ reveals all information about input $X$. + - rate of $R=I(X;Y)=H(Y)$ is possible. (same as information compression) +- If $H(Y|X)=H(X)$, then $Y$ reveals no information about $X$. + - rate of $R=I(X;Y)=0$ no information is transferred. + +> [!NOTE] +> +> Compression is transmission without noise. + +## Side notes for Cryptography + +Goal: Quantify the amount of information that is leaked to the eavesdropper. + +- Let: + - $M$ be the message distribution. + - Let $Z$ be the cyphertext distribution. +- How much information is leaked about $m$ to the eavesdropper (who sees $operatorname{Enc}(m)$)? +- Idea: One-time pad. + +### One-time pad + diff --git a/content/CSE5313/_meta.js b/content/CSE5313/_meta.js index 4d7622b..e04cfa5 100644 --- a/content/CSE5313/_meta.js +++ b/content/CSE5313/_meta.js @@ -20,4 +20,5 @@ export default { CSE5313_L14: "CSE5313 Coding and information theory for data science (Lecture 14)", CSE5313_L15: "CSE5313 Coding and information theory for data science (Lecture 15)", CSE5313_L16: "CSE5313 Coding and information theory for data science (Exam Review)", + CSE5313_L17: "CSE5313 Coding and information theory for data science (Lecture 17)", } \ No newline at end of file