diff --git a/pages/Math4121/Math4121_L25.md b/pages/Math4121/Math4121_L25.md index 391d6ac..85a32d2 100644 --- a/pages/Math4121/Math4121_L25.md +++ b/pages/Math4121/Math4121_L25.md @@ -1 +1,65 @@ -# Lecture 25 \ No newline at end of file +# Math4121 Lecture 25 + +## Continue on Measure Theory + +### Borel Mesure + +Finite additivity of Jordan content, i.e. for any $\{S_j\}_{j=1}^N$ pairwise disjoint sets and Jordan measurable, then + +$$ +\sum_{j=1}^N c(S_j)=c\left(\bigcup_{j=1}^N S_j\right) +$$ + +This fails for countable unions. + +#### Definition of Borel measurable + +Borel introduced a new measure, called _Borel measure_, was net only finitely addition, but also _countably additive_, meaning $\{S_j\}_{j=1}^\infty$ pairwise disjoint and Borel measurable, then + +$$ +m\left(\bigcup_{j=1}^\infty S_j\right) = \sum_{j=1}^\infty m(S_j) +$$ + +#### Definition of Borel measure + +Borel measure satisfies the following properties: + +1. $m(I)=\ell(I)$ if $I$ is open, closed, or half-open interval +2. countable additivity is satisfied +3. If $R, S$ are Borel measurable and $R\subseteq S$, then $S\setminus R$ is Borel measurable and $m(S\setminus R)=m(S)-m(R)$ + +### Borel sets + +#### Definition of sigma-algebra + +A collection of sets $\mathcal{A}$ is called a sigma-algebra if it satisfies the following properties: + +1. $\emptyset \in \mathcal{A}$ +2. If $\{A_j\}_{j=1}^\infty \subset \mathcal{A}$, then $\bigcup_{j=1}^\infty A_j \in \mathcal{A}$ +3. If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$ + +#### Definition of Borel sets + +The Borel sets in $\mathbb{R}$ is the smallest sigma-algebra containing all closed intervals. + +#### Proposition + +The Borel sets are Borel measurable. + +(proof in the following lectures) + +Examples: + +1. Let $S=\{x\in [0,1]: x\in \mathbb{Q}\}$ + +$S=\{q_j\}_{j=1}^\infty=\bigcup_{j=1}^\infty \{q_j\}$ (by countability of $\mathbb{Q}$) + +Since $m[q_j,q_j]=0$, $m(S)=0$. + +2. Let $S=SVC(4)$ + +Since $c_e(SVC(4))=\frac{1}{2}$ and $c_i(SVC(4))=0$, it is not Jordan measurable. + + + +