update notes
This commit is contained in:
@@ -151,10 +151,15 @@ A group $G$ is a set of elements with a binary operator $\oplus:G\times G\to G$
|
||||
|
||||
$$
|
||||
\Phi(p)=p-1
|
||||
$$ if $p$ is prime
|
||||
$$
|
||||
|
||||
if $p$ is prime
|
||||
|
||||
$$
|
||||
\Phi(N)=(p-1)(q-1)
|
||||
$$ if $N=pq$ and $p,q$ are primes
|
||||
$$
|
||||
|
||||
if $N=pq$ and $p,q$ are primes
|
||||
|
||||
#### Theorem 47.10
|
||||
|
||||
|
||||
Reference in New Issue
Block a user