From 529277b6f25513c3119d09da28ecd6636978e006 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Wed, 16 Apr 2025 10:49:52 -0500 Subject: [PATCH] fix bad substitution --- Jenkinsfile | 17 ++++++++++------- pages/Math4121/Math4121_L35.md | 23 ++++++++++++++++++++++- 2 files changed, 32 insertions(+), 8 deletions(-) diff --git a/Jenkinsfile b/Jenkinsfile index 1d0de95..e7bbdda 100644 --- a/Jenkinsfile +++ b/Jenkinsfile @@ -29,13 +29,16 @@ pipeline { } stage('Deploy') { steps { - echo "Deploying docker image ${registry}:v${version}.${env.BUILD_ID}" - echo "Stopping existing container" - sh 'docker stop notenextra || true' - echo "Removing existing container" - sh 'docker rm notenextra || true' - echo "Running new docker container" - sh 'docker run -d -p 13000:3000 --name notenextra ${registry}:v${version}.${env.BUILD_ID}' + script { + def imageTag = "${registry}:v${version}.${env.BUILD_ID}" + echo "Deploying docker image ${imageTag}" + echo "Stopping existing container" + sh 'docker stop notenextra-jenkins || true' + echo "Removing existing container" + sh 'docker rm notenextra-jenkins || true' + echo "Running new docker container" + sh "docker run -d -p 13000:3000 --name notenextra-jenkins ${imageTag}" + } } } } diff --git a/pages/Math4121/Math4121_L35.md b/pages/Math4121/Math4121_L35.md index 1d4ae04..cef68f5 100644 --- a/pages/Math4121/Math4121_L35.md +++ b/pages/Math4121/Math4121_L35.md @@ -67,6 +67,27 @@ By definition $\frac{1}{n}m(E_n)=\int_E \frac{1}{n}\chi_{E_n} \, dm \leq \int_E Therefore, $m(E_n)=0$ for all $n$. -Now $U=\{x\in E: f(x)>0\}=\bigcup_{n=1}^{\infty} E_n$. +Now $U=\{x\in E: f(x)>0\}=\bigcup_{n=1}^{\infty} E_n$, and $E_n\subseteq E_{n+1}$ for all $n$. + +Therefore, $m(U)=m(\bigcup_{n=1}^{\infty} E_n)=\lim_{n\to\infty} m(E_n)=0$. QED + +### Convergence Theorems + +When does $\lim_{n\to\infty} \int_E f_n \, dm = \int_E \lim_{n\to\infty} f_n \, dm$? + +#### Theorem 6.14 Monotone Convergence Theorem + +Let $\{f_n\}$ be a monotone increasing sequence of measurable functions on $E$ and $f_n\to f$ almost everywhere on $E$. ($f_n(x)\leq f_{n+1}(x)$ for all $x\in E$ and $n$) + +If there exists $A>0$ such that $\left|\int_E f_n \, dm\right|\leq A$ for all $n\in \mathbb{N}$, then $f(x)=\lim_{n\to\infty} f_n(x)$ exists for almost every $x\in E$ and it is integrable on $E$ and + +$$ +\int_E f \, dm = \lim_{n\to\infty} \int_E f_n \, dm +$$ + +Proof: + +QED +