updates
This commit is contained in:
204
content/CSE510/CSE510_L12.md
Normal file
204
content/CSE510/CSE510_L12.md
Normal file
@@ -0,0 +1,204 @@
|
||||
# CSE510 Deep Reinforcement Learning (Lecture 12)
|
||||
|
||||
## Policy Gradient Theorem
|
||||
|
||||
For any differentiable policy $\pi_\theta(s,a)$, for any o the policy objective functions $J=J_1, J_{avR}$ or $\frac{1}{1-\gamma} J_{avV}$
|
||||
|
||||
The policy gradient is
|
||||
|
||||
$$
|
||||
\nabla_{\theta}J(\theta)=\mathbb{E}_{\pi_{\theta}}\left[\nabla_\theta \log \pi_\theta(s,a)Q^{\pi_\theta}(s,a)\right]
|
||||
$$
|
||||
|
||||
## Policy Gradient Methods
|
||||
|
||||
Advantages of Policy-Based RL
|
||||
|
||||
Advantages:
|
||||
|
||||
- Better convergence properties
|
||||
- Effective in high-dimensional or continuous action spaces
|
||||
- Can learn stochastic policies
|
||||
|
||||
Disadvantages:
|
||||
|
||||
- Typically converge to a local rather than global optimum
|
||||
- Evaluating a policy is typically inefficient and high variance
|
||||
|
||||
### Anchor-Critic Methods
|
||||
|
||||
#### Q Actor-Critic
|
||||
|
||||
Reducing Variance Using a Critic
|
||||
|
||||
Monte-Carlo Policy Gradient still has high variance.
|
||||
|
||||
We use a critic to estimate the action-value function $Q_w(s,a)\approx Q^{\pi_\theta}(s,a)$.
|
||||
|
||||
Anchor-critic algorithms maintain two sets of parameters:
|
||||
|
||||
Critic: updates action-value function parameters $w$
|
||||
|
||||
Actor: updates policy parameters $\theta$, in direction suggested by the critic.
|
||||
|
||||
Actor-critic algorithms follow an approximate policy gradient:
|
||||
|
||||
$$
|
||||
\nabla_\theta J(\theta) \approx \mathbb{E}_{\pi_{\theta}}\left[\nabla_\theta \log \pi_\theta(s,a)Q_w(s,a)\right]
|
||||
$$
|
||||
$$
|
||||
\Delta \theta = \alpha \nabla_\theta \log \pi_\theta(s,a)Q_w(s,a)
|
||||
$$
|
||||
|
||||
Action-Value Actor-Critic
|
||||
|
||||
- Simple actor-critic algorithm based on action-value critic
|
||||
- Using linear value function approximation $Q_w(s,a)=\phi(s,a)^T w$
|
||||
|
||||
Critic: updates $w$ by linear $TD(0)$
|
||||
Actor: updates $\theta$ by policy gradient
|
||||
|
||||
```python
|
||||
def Q_actor-critic(states,theta):
|
||||
actions=sample_actions(a,pi_theta)
|
||||
for i in range(num_steps):
|
||||
reward=sample_rewards(actions,states)
|
||||
transition=sample_transition(actions,states)
|
||||
new_actions=sample_action(transition,theta)
|
||||
delta=sample_reward+gamma*Q_w(transition, new_actions)-Q_w(states, actions)
|
||||
theta=theta+alpha*nabla_theta*log(pi_theta(states, actions))*Q_w(states, actions)
|
||||
w=w+beta*delta*phi(states, actions)
|
||||
a=new_actions
|
||||
s=transition
|
||||
```
|
||||
|
||||
#### Advantage Actor-Critic
|
||||
|
||||
Reducing variance using a baseline
|
||||
|
||||
- We subtract a baseline function $B(s)$ form the policy gradient
|
||||
- This can reduce the variance without changing expectation
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\mathbb{E}_{\pi_\theta}\left[\nabla_\theta\log \pi_\theta(s,a)B(s)]&=\sum_{s\in S}d^{\pi_\theta}(s)\sum_{a\in A}\nabla_{\theta}\pi_\theta(s,a)B(s)\\
|
||||
&=\sum_{s\in S}d^{\pi_\theta}B(s)\nabla_\theta\sum_{a\in A}\pi_\theta(s,a)\\
|
||||
&=0
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
A good baseline is the state value function $B(s)=V^{\pi_\theta}(s)$
|
||||
|
||||
So we can rewrite the policy gradient using the advantage function $A^{\pi_\theta}(s,a)=Q^{\pi_\theta}(s,a)-V^{\pi_theta}(s)$
|
||||
|
||||
$$
|
||||
\nabla_\theta J(\theta)=\mathbb{E}\left[\nabla_\theta \log \pi_\theta(s,a) A^{\pi_theta}(s,a)\right]
|
||||
$$
|
||||
|
||||
##### Estimating the Advantage function
|
||||
|
||||
**Method 1:** direct estimation
|
||||
|
||||
> May increase the variance
|
||||
|
||||
The advantage function can significantly reduce variance of policy gradient
|
||||
|
||||
So the critic should really estimate the advantage function
|
||||
|
||||
For example, by estimating both $V^{\pi_theta}(s)$ and $Q^{\pi_theta}(s,a)$
|
||||
|
||||
Using two function approximators and two parameter vectors,
|
||||
|
||||
$$
|
||||
V_v(s)\approx V^{\pi_\theta}(s)\\
|
||||
Q_w(s,a)\approx Q^{\pi_\theta}(s,a)\\
|
||||
A(s,a)=Q_w(s,a)-V_v(s)
|
||||
$$
|
||||
|
||||
And updating both value functions by e.g. TD learning
|
||||
|
||||
**Method 2:** using the TD error
|
||||
|
||||
> We can prove that TD error is an unbiased estimation of the advantage function
|
||||
|
||||
For the true value function $V^{\pi_\theta}(s)$, the TD error $\delta^{\pi_\theta}$
|
||||
|
||||
$$
|
||||
\delta^{\pi_\theta} = r + \gamma V^{\pi_\theta}(s) - V^{\pi_\theta}(s)
|
||||
$$
|
||||
|
||||
is an unbiased estimate of the advantage function
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\mathbb{E}_{\pi_\theta}[\delta^{\pi_\theta}| s,a]&=\mathbb{E}_{\pi_\theta}[r + \gamma V^{\pi_\theta}(s') |s,a]-V^{\pi_\theta}(s)\\
|
||||
&=Q^{\pi_\theta}(s,a)-V^{\pi_\theta}(s)\\
|
||||
&=A^{\pi_\theta}(s,a)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
So we can use the TD error to compute the policy gradient
|
||||
|
||||
$$
|
||||
\Delta \theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) \delta^{\pi_\theta}]
|
||||
$$
|
||||
|
||||
In practice, we can use an approximate TD error $\delta_v=r+\gamma V_v(s')-V_v(s)$ to compute the policy gradient
|
||||
|
||||
### Summary of policy gradient algorithms
|
||||
|
||||
THe policy gradient has many equivalent forms.
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\nabla_\theta J(\theta) &= \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) v_t] \text{ REINFORCE} \\
|
||||
&= \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) Q_w(s,a)] \text{ Q Actor-Critic} \\
|
||||
&= \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) A^{\pi_\theta}(s,a)] \text{ Advantage Actor-Critic} \\
|
||||
&= \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) \delta^{\pi_\theta}] \text{ TD Actor-Critic}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Each leads s stochastic gradient ascent algorithm.
|
||||
|
||||
Critic use policy evaluation to estimate the $Q^\pi(s,a)$ or $A^\pi(s,a)$ or $V^\pi(s)$.
|
||||
|
||||
## Compatible Function Approximation
|
||||
|
||||
If the following two conditions are satisfied:
|
||||
|
||||
1. Value function approximation is a compatible with the policy
|
||||
$$
|
||||
\nabla_w Q_w(s,a) = \nabla_\theta \log \pi_\theta(s,a)
|
||||
$$
|
||||
2. Value function parameters $w$ minimize the MSE
|
||||
$$
|
||||
\epsilon = \mathbb{E}_{\pi_\theta}[(Q^{\pi_\theta}(s,a)-Q_w(s,a))^2]
|
||||
$$
|
||||
Note $\epsilon$ need not be zero, just need to be minimized.
|
||||
|
||||
Then the policy gradient is exact
|
||||
|
||||
$$
|
||||
\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) Q_w(s,a)]
|
||||
$$
|
||||
|
||||
Remember:
|
||||
|
||||
$$
|
||||
\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) Q^{\pi_\theta}(s,a)]
|
||||
$$
|
||||
|
||||
### Challenges with Policy Gradient Methods
|
||||
|
||||
- Data Inefficiency
|
||||
- On-policy method: for each new policy, we need to generate a completely new
|
||||
- trajectory
|
||||
- The data is thrown out after just one gradient update
|
||||
- As complex neural networks need many updates, this makes the training process very slow
|
||||
- Unstable update: step size is very important
|
||||
- If step size is too large:
|
||||
- Large step -> bad policy
|
||||
- Next batch is generated from current bad policy -> collect bad samples
|
||||
- Bad samples -> worse policy (compare to supervised learning: the correct label and data in the following batches may correct it)
|
||||
- If step size is too small: the learning process is slow
|
||||
|
||||
Reference in New Issue
Block a user