From 56e93bb0072abe3da038068265bc84f9d0c9e994 Mon Sep 17 00:00:00 2001 From: Trance-0 <60459821+Trance-0@users.noreply.github.com> Date: Sun, 23 Nov 2025 12:06:09 -0600 Subject: [PATCH] Update CSE5313_L24.md --- content/CSE5313/CSE5313_L24.md | 43 +++++++++++++++++++++++++++------- 1 file changed, 34 insertions(+), 9 deletions(-) diff --git a/content/CSE5313/CSE5313_L24.md b/content/CSE5313/CSE5313_L24.md index be8239a..9eddab0 100644 --- a/content/CSE5313/CSE5313_L24.md +++ b/content/CSE5313/CSE5313_L24.md @@ -37,7 +37,6 @@ Need $P=SM$ worker nodes, and index each one by $s\in [0,S-1], n\in [0,M-1]$. Worker node $(s,n)$ performs matrix multiplication $\tilde{A}_s^\top\cdot B_n$. - $$ \begin{bmatrix} A_0^\top\\ @@ -46,7 +45,7 @@ A_0^\top+A_1^\top \end{bmatrix} \begin{bmatrix} B_0 & B_1 -\enn{bmatrix} +\end{bmatrix} $$ Need $S-M$ responses from each column. @@ -71,7 +70,7 @@ A_0^\top+A_1^\top \end{bmatrix} \begin{bmatrix} B_0 & B_1 & B_0+B_1 -\enn{bmatrix} +\end{bmatrix} $$ Decodability depends on the pattern. @@ -95,6 +94,10 @@ Corollary: > > 1. $K_{1D-MDS}=P-S+M=\Theta(P)$ (linearly) > 2. $K_{2D-MDS}=P-(S-M+1)^2+1$. +> - Consider $S\times S$ bipartite graph with $(S-M+1)\times (S-M+1)$ complete subgraph. +> - There exists subgraph with all degrees larger than $S-M\implies$ not decodable. +> - On the other hand: Fewer than $(S-M+1)^2$ edges cannot form a subgraph with all degrees $>S-M$. +> - $K$ scales sub-linearly with $P$. > 3. $K_{product} > Our goal is to get rid of $P$. @@ -298,22 +301,44 @@ Suppose $P=(r+1)\cdot K$. ### Linear codes -However, $f$ is a polynomial of degree $d$, not a linear transformation unless $d=1$. +Recall previous linear computations (matrix-vector): + +- $[\tilde{A}_1,\tilde{A}_2,\tilde{A}_3]=[A_1,A_2,A_1+A_2]$ is the corresponding codeword of $[A_1,A_2]$. +- Every worker node $i$ computes $f(\tilde{A}_i)=\tilde{A}_i x$. +- $[\tilde{A}_1x, \tilde{A}_2x, \tilde{A}_3x]=[A_1x,A_2x,A_1x+A_2x]$ is the corresponding codeword of $[A_1x,A_2x]$. + - This enables to decode $[A_1x,A_2x]$ from $[\tilde{A}_1x,\tilde{A}_2x,\tilde{A}_3 x]$. + +However, $f$ is a **polynomial of degree $d$**, not a linear transformation unless $d=1$. - $f(cX)\neq cf(X)$, where $c$ is a constant. - $f(X_1+X_2)\neq f(X_1)+f(X_2)$. +> [!CAUTION] +> +> $[f(\tilde{X}_1),f(\tilde{X}_2),\ldots,f(\tilde{X}_K)]$ is not the codeword corresponding to $[f(X_1),f(X_2),\ldots,f(X_K)]$ in any linear code. + Our goal is to create an encoder/decode such that: - Linear encoding: is the codeword of $[X_1,X_2,\ldots,X_K]$ for some linear code. + - i.e., $[\tilde{X}_1,\tilde{X}_2,\ldots,\tilde{X}_K]=[X_1,X_2,\ldots,X_K]G$ for some generator matrix $G$. + - Every $\tilde{X}_i$ is some linear combination of $X_1,\ldots,X_K$. - The $f(X_i)$ are decodable from some subset of $f(\tilde{X}_i)$'s. + - Some of coded results are missing, erroneous. - $X_i$'s are kept private. ### Lagrange Coded Computing Let $\ell(z)$ be a polynomial whose evaluations at $\omega_1,\ldots,\omega_{K}$ are $X_1,\ldots,X_K$. -Then every $f(X_i)=f(\ell(\omega_i))$ is an evaluation of polynomial $f\cicc \ell(z)$ at $\omega_i$. +- That is, $\ell(\omega_i)=X_i$ for every $\omega_i\in \mathbb{F}, i\in [K]$. + +Some example constructions: + +Given $X_1,\ldots,X_K$ with corresponding $\omega_1,\ldots,\omega_K$ + +- $\ell(z)=\sum_{i=1}^K X_iL_i(z)$, where $L_i(z)=\prod_{j\in[K],j\neq i} \frac{z-\omega_j}{\omega_i-\omega_j}=\begin{cases} 0 & \text{if } j\neq i \\ 1 & \text{if } j=i \end{cases}$. + +Then every $f(X_i)=f(\ell(\omega_i))$ is an evaluation of polynomial $f\circ \ell(z)$ at $\omega_i$. If the master obtains the composition $h=f\circ \ell$, it can obtain every $f(X_i)=h(\omega_i)$. @@ -334,19 +359,19 @@ Need polynomial $\ell(z)$ such that: Having obtained such $\ell$ we let $\tilde{X}_i=\ell(\alpha_i)$ for every $i\in [P]$. -$\span{\tilde{X}_1,\tilde{X}_2,\ldots,\tilde{X}_P}=\span{\ell_1(x),\ell_2(x),\ldots,\ell_P(x)}$. +$span{\tilde{X}_1,\tilde{X}_2,\ldots,\tilde{X}_P}=span{\ell_1(x),\ell_2(x),\ldots,\ell_P(x)}$. Want $X_k=\ell(\omega_k)$ for every $k\in [K]$. Tool: Lagrange interpolation. - $\ell_k(z)=\prod_{i\neq k} \frac{z-\omega_j}{\omega_k-\omega_j}$. -- $\ell(z)=1$ and $\ell_k(\omega_k)=0$ for every $j\neq k$. -- $\deg \ell(z)=K-1$. +- $\ell_k(\omega_k)=1$ and $\ell_k(\omega_k)=0$ for every $j\neq k$. +- $\deg \ell_k(z)=K-1$. Let $\ell(z)=\sum_{k=1}^K X_k\ell_k(z)$. -- $\deg \ell=K-1$. +- $\deg \ell\leq K-1$. - $\ell(\omega_k)=X_k$ for every $k\in [K]$. Let $\tilde{X}_i=\ell(\alpha_i)=\sum_{k=1}^K X_k\ell_k(\alpha_i)$.