diff --git a/docker-compose.yaml b/docker-compose.yaml index c7e5cbb..e892880 100644 --- a/docker-compose.yaml +++ b/docker-compose.yaml @@ -3,7 +3,7 @@ services: build: context: ./ dockerfile: ./Dockerfile - image: trance0/notenextra:v1.1.11 + image: trance0/notenextra:v1.1.12 restart: on-failure:5 ports: - 13000:3000 diff --git a/pages/CSE559A/_meta.js b/pages/CSE559A/_meta.js index 1d8dc77..f222b11 100644 --- a/pages/CSE559A/_meta.js +++ b/pages/CSE559A/_meta.js @@ -22,4 +22,5 @@ export default { CSE559A_L17: "Computer Vision (Lecture 17)", CSE559A_L18: "Computer Vision (Lecture 18)", CSE559A_L19: "Computer Vision (Lecture 19)", + CSE559A_L20: "Computer Vision (Lecture 20)", } diff --git a/pages/Math4121/Math4121_L30.md b/pages/Math4121/Math4121_L30.md new file mode 100644 index 0000000..631d363 --- /dev/null +++ b/pages/Math4121/Math4121_L30.md @@ -0,0 +1,94 @@ +# Math4121 Lecture 30 + +## Lebesgue Measure + +$\mathfrak{M}=\{S\subseteq\mathbb{R}:S\text{ is Lebesgue measurable}\}$ is a $\sigma$-algebra on $\mathbb{R}$ (closed under complementation and countable unions). + +### Consequence of Lebesgue Measure + +Every open set and closed set is Lebesgue measurable. + +#### Inner and Outer Regularity of Lebesgue Measure + +Outer regularity: +$$ +m_e(S)=\inf_{U\text{ open},S\subseteq U}m(U) +$$ + +Inner regularity: +$$ +m_i(S)=\sup_{K\text{ closed},K\subseteq S}m(K) +$$ + +Proof: + +Inner regularity: + +Since $m_i(S)=m(I)-m_e(I\setminus S)$, $S\subseteq I$ for some closed interval $I$. Let $\epsilon>0$ and $U$ be an open set such that $I\setminus S\subseteq U$ and $m(U)m(I)-m(I\setminus S)-\epsilon +$$ + +So $m_i(S)0$, $\exists I_1,I_2,\cdots,I_n\subset I$ open intervals such that + +$$ +m(S\Delta U)<\epsilon +$$ + +where $U=\bigcup_{j =1}^n I_j$. + +Proof: + +Let $\epsilon>0$ and $m(V)