updates
This commit is contained in:
60
content/Swap/Math4501/Math4501_L1.md
Normal file
60
content/Swap/Math4501/Math4501_L1.md
Normal file
@@ -0,0 +1,60 @@
|
||||
# Math4501 Lecture 1
|
||||
|
||||
In many practical problems (ODEs (ordinary differential equations), PdEs (partial differential equations), System of equations)
|
||||
|
||||
closed-form analytical solutions are unknown.
|
||||
|
||||
-> resort ot computational algorithms (approximation)
|
||||
|
||||
For example,
|
||||
|
||||
Deep learning classifiers
|
||||
|
||||
**Root finding**
|
||||
|
||||
$$
|
||||
f(x)=\sum_{i=1}^n a_i x^i
|
||||
$$
|
||||
|
||||
for $n\geq 5$.
|
||||
|
||||
find all roots $x\in \mathbb{R}$ of $f(x)=0$.
|
||||
|
||||
**Investment**
|
||||
|
||||
Invest a dollars every month return with the rate $r$.
|
||||
|
||||
$g(r)=a\sum_{i=1}^n (1+r)^i=a\left[\frac{(1+r)^{n+1}-(1+r)}{r}\right]$
|
||||
|
||||
Say want $g(r)=b$ for some $b$.
|
||||
|
||||
$f(r)=a(1+n)^{n+1}-a(1+n)-br=0$
|
||||
|
||||
use Newton's method to find $r$ such that $f(r)=0$.
|
||||
|
||||
Since $f$ is non-linear, that is $f(x+y)\neq f(x)+f(y)$.
|
||||
|
||||
Let
|
||||
|
||||
$$
|
||||
f_1(x_1,\dots, x_m)=0\\
|
||||
\vdots\\
|
||||
f_m(x_1,\dots, x_m)=0
|
||||
$$
|
||||
|
||||
be a system of $m$ equations $\vec{f} \mathbb{R}^m \to \mathbb{R}^m$. and $f_1(\vec{x})=\vec{0}$.
|
||||
|
||||
If $\vec{f}$ is linear, note that
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\vec{f}(\vec{x})&=\vec{f}(\begin{bmatrix}x_1\\ \vdots\\ x_m\end{bmatrix})\\
|
||||
&=\vec{f}(x_1\begin{bmatrix}1\\ 0\\ \vdots\\ 0\end{bmatrix}+x_2\begin{bmatrix}0\\ 1\\ \vdots\\ 0\end{bmatrix}+\cdots+x_m\begin{bmatrix}0\\ 0\\ \vdots\\ 1\end{bmatrix})\\
|
||||
&=x_1\vec{f}(\begin{bmatrix}1\\ 0\\ \vdots\\ 0\end{bmatrix})+x_2\vec{f}(\begin{bmatrix}0\\ 1\\ \vdots\\ 0\end{bmatrix})+\cdots+x_m\vec{f}(\begin{bmatrix}0\\ 0\\ \vdots\\ 1\end{bmatrix})\\
|
||||
&=A\vec{x}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
where $\vec{e}_i$ is the $i$-th standard basis vector.
|
||||
|
||||
Gaussian elimination (LU factorization)
|
||||
76
content/Swap/Math4501/Math4501_L2.md
Normal file
76
content/Swap/Math4501/Math4501_L2.md
Normal file
@@ -0,0 +1,76 @@
|
||||
# Math4501 Lecture 2
|
||||
|
||||
Solving non-linear equations
|
||||
|
||||
Let $\vec{f}:\mathbb{R}^n\to\mathbb{R}^n$ we want to solve $\vec{f}(\vec{x})=\vec{0}$. ($m$ equations, $m$ variables)
|
||||
|
||||
In case if $\vec{f}$ is linear, we can solve it by Gaussian elimination.
|
||||
|
||||
Closely related to the problem: eigenvalue problem.
|
||||
|
||||
related to root finding problem for polynomial.
|
||||
|
||||
## Polynomial approximations
|
||||
|
||||
Let $f:[0,1]\to\mathbb{R}$ be a continuous function.
|
||||
|
||||
Find polynomial $p_n$ of degree $n$ such that $p_n(x_i)=f(x_i)$ for $i=0,1,\cdots,n$.
|
||||
|
||||
Then, some key questions are involved:
|
||||
|
||||
1. How to compute $c_0,c_1,\cdots,c_n$?
|
||||
2. If $f$ is continuously differentiable, does $p_n'$ approximate $f'$?
|
||||
3. If $f$ is integrable, does $\int_0^1 p_n(x)dx$ approximate $\int_0^1 f(x)dx$?
|
||||
|
||||
Deeper questions:
|
||||
|
||||
Is the approximation **efficient**?
|
||||
|
||||
## Scalar problem
|
||||
|
||||
Problem 1: Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Find $\xi\in[a,b]$ such that $f(\xi)=0$.
|
||||
|
||||
Problem 2: Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Find $\xi\in[a,b]$ such that $f(\xi)=\xi$.
|
||||
|
||||
P1, P2 are equivalent. $f(x)\coloneqq f(x)-x$ is a continuous function.
|
||||
|
||||
[Intermediate value theorem](https://notenextra.trance-0.com/Math4121/Math4121_L3#definition-5121-intermediate-value)
|
||||
|
||||
> Some advantage in solving P1 as P2
|
||||
|
||||
### When does a solution exists
|
||||
|
||||
Trivial case: $f(x)=0$ for some $x\in[a,b]$.
|
||||
|
||||
Without loss of generality, assume $f(a)f(b)<0$, Then there exists $\xi\in(a,b)$ such that $f(\xi)=0$.
|
||||
|
||||
Bisection algorithm:
|
||||
|
||||
```python
|
||||
def bisection(f, a, b, tol=1e-6, max_iter=100):
|
||||
# first we setup two sequences $a_n$ and $b_n$
|
||||
# require:
|
||||
# |a_n - b_n| \leq 2^{-n} (b-a)
|
||||
for i in range(max_iter):
|
||||
c = (a + b) / 2
|
||||
if c < tol or f(c) == 0:
|
||||
return c
|
||||
elif f(a) * f(c) < 0:
|
||||
b = c
|
||||
else:
|
||||
a = c
|
||||
return None
|
||||
```
|
||||
|
||||
Let $f(a_n)<0$ for all $n$ and $f(b_n)>0$ for all $n$.
|
||||
|
||||
$\lim_{n\to\infty} f(a_n)\leq 0$ and $\lim_{n\to\infty} f(b_n)\geq 0$.
|
||||
|
||||
If limit exists, then $\lim_{n\to\infty} f(a_n)=\lim_{n\to\infty} f(b_n)=0$.
|
||||
|
||||
Such limit exists by the sequence $a_n$ and $b_n$ is Cauchy and we are in real number field.
|
||||
|
||||
This can be used to solve P2:
|
||||
|
||||
Recall that if we define $f(x)\coloneqq g(x)-x$, then $f(x)=0$ if and only if $f(a)f(b)<0$. That is $(g(a)-a)(g(b)-b)\leq 0$.
|
||||
|
||||
120
content/Swap/Math4501/Math4501_L3.md
Normal file
120
content/Swap/Math4501/Math4501_L3.md
Normal file
@@ -0,0 +1,120 @@
|
||||
# Math4501 Lecture 3
|
||||
|
||||
## Review from last lecture
|
||||
|
||||
### Bisection method for finding root
|
||||
|
||||
P1. Let $f$ be a continuous function on $[a,b]\to \mathbb{R}$, find $\xi \in [a,b]$ such that $f(\xi)=0$.
|
||||
|
||||
P2. Let $g$ be a continuous function on $[a,b]\to \mathbb{R}$, find $\xi \in [a,b]$ such that $g(\xi)=\xi$.
|
||||
|
||||
#### Theorem 1:
|
||||
|
||||
solution to P1 exists if $f(a)f(b)<0$.
|
||||
|
||||
#### Theorem 2:
|
||||
|
||||
Fixed point theorem:
|
||||
|
||||
If solution to P2 exists, then $g:[a,b]\to [a,b]$.
|
||||
|
||||
#### Bijection method
|
||||
|
||||
Obtain two sequence $(a_n)_{n=1}^\infty$ and $(b_n)_{n=1}^\infty$.
|
||||
|
||||
Initially, we set $a_0=a$ and $b_0=b$.
|
||||
|
||||
If $|a_n-b_n|<2^{-n}|a_0-b_0|$, then $a_n$ and $b_n$ are Cauchy sequence. So their limit exists.
|
||||
|
||||
$\lim_{n\to\infty} a_n=\lim_{n\to\infty} b_n=\xi$.
|
||||
|
||||
### Simple iteration method
|
||||
|
||||
#### Definition of Simple Iteration
|
||||
|
||||
Given $x_0\in [a,b]$, we define a sequence $(x_n)_{n=0}^\infty$ by
|
||||
|
||||
$$
|
||||
x_{n+1}=g(x_n)
|
||||
$$
|
||||
|
||||
If a simple iteration converges, the it converges to a fixed point of
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Proof</summary>
|
||||
|
||||
Let $c\coloneqq \lim_{n\to\infty} x_n=g(c)$.
|
||||
|
||||
$g:[a,b]\to \mathbb{R}$ is continuous if and only if $g$ is continuous at $x_0\in [a,b]$.
|
||||
|
||||
</details>
|
||||
|
||||
#### Definition of Lipschitz continuous
|
||||
|
||||
A function $g:[a,b]\to \mathbb{R}$ is Lipschitz continuous if for all $x,y\in [a,b]$, there exists a constant $L>0$ such that
|
||||
|
||||
$$
|
||||
|g(x)-g(y)|\leq L|x-y|
|
||||
$$
|
||||
|
||||
for some $L>0$.
|
||||
|
||||
> [!NOTE]
|
||||
>
|
||||
> Lipschitz continuous is a stronger condition than continuous.
|
||||
>
|
||||
> If a function is Lipschitz continuous, then it is continuous.
|
||||
>
|
||||
> However, the converse is not true.
|
||||
|
||||
#### Definition of contraction mapping
|
||||
|
||||
A function $g:[a,b]\to \mathbb{R}$ is a contraction mapping if it is Lipschitz continuous with $L<1$.
|
||||
|
||||
#### Theorem of simple iteration
|
||||
|
||||
Let $g:[a,b]\to [a,b]$ is a contraction mapping (Lipschitz continuous with $L<1$, with pointwise ontinuous $g$).
|
||||
|
||||
Then
|
||||
|
||||
- $g$ has a unique fixed point $\xi \in [a,b]$
|
||||
- Simple iteration $x_{n+1}=g(x_n)$ converges to $\xi$ for any $x_0\in [a,b]$.
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Proof</summary>
|
||||
|
||||
**Uniqueness**:
|
||||
|
||||
Suppose $\xi_1$ and $\xi_2$ are two fixed points of $g$.
|
||||
|
||||
Then $|x_1-x_2|=|g(\xi_1)-g(\xi_2)|\leq L|\xi_1-\xi_2|$.
|
||||
|
||||
Thus, $(1-L)|\xi_1-\xi_2|\leq 0$, which implies $|\xi_1-\xi_2|=0$.
|
||||
|
||||
A more general result:
|
||||
|
||||
Brouwer's fixed point theorem
|
||||
|
||||
**Convergence**:
|
||||
|
||||
Let $\xi\in [a,b]$ be the unique fixed point of $g$.
|
||||
|
||||
Then,
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
|x_n-\xi|&=|g(x_{n-1})-g(\xi)|\\
|
||||
&\leq L|x_{n-1}-\xi|\\
|
||||
&=L|g(x_{n-2})-g(\xi)|\\
|
||||
&\leq L^2|x_{n-2}-\xi|\\
|
||||
&\vdots\\
|
||||
&\leq L^n|x_0-\xi|
|
||||
$$
|
||||
|
||||
Thus, we can always find $N$ such that $L^N|x_0-\xi|<\epsilon$ for any $\epsilon>0$. Choose $N=\log(\frac{\epsilon}{|x_0-\xi|})/\log(L)$.
|
||||
|
||||
Therefore, $x_n$ converges to $\xi$.
|
||||
|
||||
</details>
|
||||
9
content/Swap/Math4501/_meta.js
Normal file
9
content/Swap/Math4501/_meta.js
Normal file
@@ -0,0 +1,9 @@
|
||||
export default {
|
||||
index: "Course Description",
|
||||
"---":{
|
||||
type: 'separator'
|
||||
},
|
||||
Math4501_L1: "Numerical Applied Mathematics (Lecture 1)",
|
||||
Math4501_L2: "Numerical Applied Mathematics (Lecture 2)",
|
||||
Math4501_L3: "Numerical Applied Mathematics (Lecture 3)",
|
||||
}
|
||||
3
content/Swap/Math4501/index.md
Normal file
3
content/Swap/Math4501/index.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# Math4501
|
||||
|
||||
Numerical Applied Mathematics
|
||||
Reference in New Issue
Block a user