From 59513fe4230e8d068034cf3dff2a446a931ac797 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Wed, 5 Feb 2025 13:50:35 -0600 Subject: [PATCH] Update Math4121_L10.md --- pages/Math4121/Math4121_L10.md | 91 +++++++++++++++++++++++++++++++++- 1 file changed, 90 insertions(+), 1 deletion(-) diff --git a/pages/Math4121/Math4121_L10.md b/pages/Math4121/Math4121_L10.md index 72b00ef..c2ba45b 100644 --- a/pages/Math4121/Math4121_L10.md +++ b/pages/Math4121/Math4121_L10.md @@ -1 +1,90 @@ -# Lecture 10 \ No newline at end of file +# Lecture 10 + +## Recap + +### Properties of Riemann-Stieltjes Integral + +#### Linearity (Theorem 6.12 (a)) + +If $f,g\in \mathscr{R}(\alpha)$ on $[a, b]\subset \mathbb{R},c,d\in \mathbb{R}$, then $cf+dg\in \mathscr{R}(\alpha)$ on $[a, b]$ and + +$$ +\int_a^b (cf+dg)d\alpha = c\int_a^b f d\alpha + d\int_a^b g d\alpha +$$ + +#### Composition (Theorem 6.11) + +Suppose $f\in \mathscr{R}(\alpha)$ on $[a, b]$, $m\leq f(x)\leq M$ for all $x\in [a, b]$, and $\phi$ is continuous on $[m, M]$, and let $h(x)=\phi(f(x))$ on $[a, b]$. Then $h\in \mathscr{R}(\alpha)$ on $[a, b]$. + +#### Monotonicity (Theorem 6.12 (b)) + +If $f,g\in \mathscr{R}(\alpha)$ on $[a, b]$, and $f(x)\leq g(x),\forall x\in [a, b]$, then $\int_a^b f d\alpha \leq \int_a^b g d\alpha$. + +## Continue on Chapter 6 + +### Properties of Integrable Functions + +#### Theorem 6.13 + +Suppose $f,g\in \mathscr{R}(\alpha)$ on $[a, b]$, and $c\in (a, b)$. Then + +(a) $fg\in \mathscr{R}(\alpha)$ on $[a, b]$. + +Proof: + +By linearity, $f+g,f-g\in \mathscr{R}(\alpha)$ on $[a, b]$. + +Moreover, let $\phi(x)=x^2$, which is continuous on $\mathbb{R}$. + +By **Theorem 6.11**, $f^2,g^2\in \mathscr{R}(\alpha)$ on $[a, b]$. + +By linearity, $fg=1/4((f+g)^2-(f-g)^2)\in \mathscr{R}(\alpha)$ on $[a, b]$. + +EOP + +(b) $|f|\in \mathscr{R}(\alpha)$ on $[a, b]$, and $|\int_a^b f d\alpha|\leq \int_a^b |f| d\alpha$. + +Proof: + +Let $\phi(x)=|x|$, which is continuous on $\mathbb{R}$. + +By **Theorem 6.11**, $|f|\in \mathscr{R}(\alpha)$ on $[a, b]$. + +Let $c=-1$ or $c=1$. such that $c\int_a^b f d\alpha=| \int_a^b f d\alpha|$. + +By linearity, $c\int_a^b f d\alpha=\int_a^b cfd\alpha$. Since $cf\leq |f|$, by monotonicity, $|\int_a^b cfd\alpha|=\int_a^b cfd\alpha\leq \int_a^b |f| d\alpha$. + +EOP + +### Indicator Function + +#### Definition 6.14 + +The unit step function is defined as + +$$ +I(x)=\begin{cases} +0, & x\le 0 \\ +1, & x>0 +\end{cases} +$$ + +#### Theorem 6.15 + +Let $a