update notations
This commit is contained in:
@@ -101,7 +101,7 @@ $$
|
||||
|
||||
Let $\mathcal{C}=[n,k,d]_q$.
|
||||
|
||||
The dual code of $\mathcal{C}$ is $\mathcal{C}^\perp=\{x\in \mathbb{F}^n_q|xc^T=0\text{ for all }c\in \mathcal{C}\}$.
|
||||
The dual code of $\mathcal{C}$ is $\mathcal{C}^\perp=\{x\in \mathbb{F}^n_q|xc^\top=0\text{ for all }c\in \mathcal{C}\}$.
|
||||
|
||||
<details>
|
||||
<summary>Example</summary>
|
||||
@@ -151,7 +151,7 @@ So $\langle f,h\rangle=0$.
|
||||
<details>
|
||||
<summary>Proof for the theorem</summary>
|
||||
|
||||
Recall that the dual code of $\operatorname{RM}(r,m)^\perp=\{x\in \mathbb{F}_2^m|xc^T=0\text{ for all }c\in \operatorname{RM}(r,m)\}$.
|
||||
Recall that the dual code of $\operatorname{RM}(r,m)^\perp=\{x\in \mathbb{F}_2^m|xc^\top=0\text{ for all }c\in \operatorname{RM}(r,m)\}$.
|
||||
|
||||
So $\operatorname{RM}(m-r-1,m)\subseteq \operatorname{RM}(r,m)^\perp$.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user