update notations
This commit is contained in:
@@ -230,7 +230,7 @@ Step 1: Arrange the $B=\binom{k+1}{2}+k(d-k)$ symbols in a matrix $M$ follows:
|
||||
$$
|
||||
M=\begin{pmatrix}
|
||||
S & T\\
|
||||
T^T & 0
|
||||
T^\top & 0
|
||||
\end{pmatrix}\in \mathbb{F}_q^{d\times d}
|
||||
$$
|
||||
|
||||
@@ -267,15 +267,15 @@ Repair from (any) nodes $H = \{h_1, \ldots, h_d\}$.
|
||||
|
||||
Newcomer contacts each $h_j$: “My name is $i$, and I’m lost.”
|
||||
|
||||
Node $h_j$ sends $c_{h_j}M c_i^T$ (inner product).
|
||||
Node $h_j$ sends $c_{h_j}M c_i^\top$ (inner product).
|
||||
|
||||
Newcomer assembles $C_H Mc_i^T$.
|
||||
Newcomer assembles $C_H Mc_i^\top$.
|
||||
|
||||
$CH$ invertible by construction!
|
||||
|
||||
- Recover $Mc_i^T$.
|
||||
- Recover $Mc_i^\top$.
|
||||
|
||||
- Recover $c_i^TM$ ($M$ is symmetric)
|
||||
- Recover $c_i^\topM$ ($M$ is symmetric)
|
||||
|
||||
#### Reconstruction on Product-Matrix MBR codes
|
||||
|
||||
@@ -292,9 +292,9 @@ DC assembles $C_D M$.
|
||||
|
||||
$\Psi_D$ invertible by construction.
|
||||
|
||||
- DC computes $\Psi_D^{-1}C_DM = (S+\Psi_D^{-1}\Delta_D^T, T)$
|
||||
- DC computes $\Psi_D^{-1}C_DM = (S+\Psi_D^{-1}\Delta_D^\top, T)$
|
||||
- DC obtains $T$.
|
||||
- Subtracts $\Psi_D^{-1}\Delta_D T^T$ from $S+\Psi_D^{-1}\Delta_D T^T$ to obtain $S$.
|
||||
- Subtracts $\Psi_D^{-1}\Delta_D T^\top$ from $S+\Psi_D^{-1}\Delta_D T^\top$ to obtain $S$.
|
||||
|
||||
<details>
|
||||
<summary>Fill an example here please.</summary>
|
||||
|
||||
Reference in New Issue
Block a user