update notations

This commit is contained in:
Trance-0
2025-11-04 12:43:23 -06:00
parent d24c0bdd9e
commit 614479e4d0
27 changed files with 333 additions and 100 deletions

View File

@@ -230,7 +230,7 @@ Step 1: Arrange the $B=\binom{k+1}{2}+k(d-k)$ symbols in a matrix $M$ follows:
$$
M=\begin{pmatrix}
S & T\\
T^T & 0
T^\top & 0
\end{pmatrix}\in \mathbb{F}_q^{d\times d}
$$
@@ -267,15 +267,15 @@ Repair from (any) nodes $H = \{h_1, \ldots, h_d\}$.
Newcomer contacts each $h_j$: “My name is $i$, and Im lost.”
Node $h_j$ sends $c_{h_j}M c_i^T$ (inner product).
Node $h_j$ sends $c_{h_j}M c_i^\top$ (inner product).
Newcomer assembles $C_H Mc_i^T$.
Newcomer assembles $C_H Mc_i^\top$.
$CH$ invertible by construction!
- Recover $Mc_i^T$.
- Recover $Mc_i^\top$.
- Recover $c_i^TM$ ($M$ is symmetric)
- Recover $c_i^\topM$ ($M$ is symmetric)
#### Reconstruction on Product-Matrix MBR codes
@@ -292,9 +292,9 @@ DC assembles $C_D M$.
$\Psi_D$ invertible by construction.
- DC computes $\Psi_D^{-1}C_DM = (S+\Psi_D^{-1}\Delta_D^T, T)$
- DC computes $\Psi_D^{-1}C_DM = (S+\Psi_D^{-1}\Delta_D^\top, T)$
- DC obtains $T$.
- Subtracts $\Psi_D^{-1}\Delta_D T^T$ from $S+\Psi_D^{-1}\Delta_D T^T$ to obtain $S$.
- Subtracts $\Psi_D^{-1}\Delta_D T^\top$ from $S+\Psi_D^{-1}\Delta_D T^\top$ to obtain $S$.
<details>
<summary>Fill an example here please.</summary>