update notations
This commit is contained in:
@@ -258,7 +258,7 @@ Algorithm:
|
||||
- Begin with $(n-k)\times (n-k)$ identity matrix.
|
||||
- Assume we choose columns $h_1,h_2,\ldots,h_\ell$ (each $h_i$ is in $\mathbb{F}^n_q$)
|
||||
- Then next column $h_{\ell}$ must not be in the space of any previous $d-2$ columns.
|
||||
- $h_{\ell}$ cannot be written as $[h_1,h_2,\ldots,h_{\ell-1}]x^T$ for $x$ of Hamming weight at most $d-2$.
|
||||
- $h_{\ell}$ cannot be written as $[h_1,h_2,\ldots,h_{\ell-1}]x^\top$ for $x$ of Hamming weight at most $d-2$.
|
||||
- So the ineligible candidates for $h_{\ell}$ is:
|
||||
- $B_{\ell-1}(0,d-2)=\{x\in \mathbb{F}^{\ell-1}_q: d_H(0,x)\leq d-2\}$.
|
||||
- $|B_{\ell-1}(0,d-2)|=\sum_{i=0}^{d-2}\binom{\ell-1}{i}(q-1)^i$, denoted by $V_q(\ell-1, d-2)$.
|
||||
|
||||
Reference in New Issue
Block a user