update notations
This commit is contained in:
@@ -64,7 +64,7 @@ $d = \begin{bmatrix}
|
||||
u \\ v
|
||||
\end{bmatrix}$
|
||||
|
||||
The solution is $d=(A^T A)^{-1} A^T b$
|
||||
The solution is $d=(A^\top A)^{-1} A^\top b$
|
||||
|
||||
Lucas-Kanade flow:
|
||||
|
||||
@@ -170,7 +170,7 @@ E = \sum_{i=1}^n (a(x_i-\bar{x})+b(y_i-\bar{y}))^2 = \left\|\begin{bmatrix}x_1-\
|
||||
$$
|
||||
|
||||
We want to find $N$ that minimizes $\|UN\|^2$ subject to $\|N\|^2= 1$
|
||||
Solution is given by the eigenvector of $U^T U$ associated with the smallest eigenvalue
|
||||
Solution is given by the eigenvector of $U^\top U$ associated with the smallest eigenvalue
|
||||
|
||||
Drawbacks:
|
||||
|
||||
|
||||
Reference in New Issue
Block a user