update notations

This commit is contained in:
Trance-0
2025-11-04 12:43:23 -06:00
parent d24c0bdd9e
commit 614479e4d0
27 changed files with 333 additions and 100 deletions

View File

@@ -64,7 +64,7 @@ $d = \begin{bmatrix}
u \\ v
\end{bmatrix}$
The solution is $d=(A^T A)^{-1} A^T b$
The solution is $d=(A^\top A)^{-1} A^\top b$
Lucas-Kanade flow:
@@ -170,7 +170,7 @@ E = \sum_{i=1}^n (a(x_i-\bar{x})+b(y_i-\bar{y}))^2 = \left\|\begin{bmatrix}x_1-\
$$
We want to find $N$ that minimizes $\|UN\|^2$ subject to $\|N\|^2= 1$
Solution is given by the eigenvector of $U^T U$ associated with the smallest eigenvalue
Solution is given by the eigenvector of $U^\top U$ associated with the smallest eigenvalue
Drawbacks: