update notations
This commit is contained in:
@@ -96,7 +96,7 @@ Example: Linear classification models
|
||||
Find a linear function that separates the data.
|
||||
|
||||
$$
|
||||
f(x) = w^T x + b
|
||||
f(x) = w^\top x + b
|
||||
$$
|
||||
|
||||
[Linear classification models](http://cs231n.github.io/linear-classify/)
|
||||
@@ -144,13 +144,13 @@ This is a convex function, so we can find the global minimum.
|
||||
The gradient is:
|
||||
|
||||
$$
|
||||
\nabla_w||Xw-Y||^2 = 2X^T(Xw-Y)
|
||||
\nabla_w||Xw-Y||^2 = 2X^\top(Xw-Y)
|
||||
$$
|
||||
|
||||
Set the gradient to 0, we get:
|
||||
|
||||
$$
|
||||
w = (X^T X)^{-1} X^T Y
|
||||
w = (X^\top X)^{-1} X^\top Y
|
||||
$$
|
||||
|
||||
From the maximum likelihood perspective, we can also derive the same result.
|
||||
|
||||
Reference in New Issue
Block a user