update notations

This commit is contained in:
Trance-0
2025-11-04 12:43:23 -06:00
parent d24c0bdd9e
commit 614479e4d0
27 changed files with 333 additions and 100 deletions

View File

@@ -262,10 +262,10 @@ Basic definitions
The special orthogonal group $SO(n)$ is the set of all **distance preserving** linear transformations on $\mathbb{R}^n$.
It is the group of all $n\times n$ orthogonal matrices ($A^T A=I_n$) on $\mathbb{R}^n$ with determinant $1$.
It is the group of all $n\times n$ orthogonal matrices ($A^\top A=I_n$) on $\mathbb{R}^n$ with determinant $1$.
$$
SO(n)=\{A\in \mathbb{R}^{n\times n}: A^T A=I_n, \det(A)=1\}
SO(n)=\{A\in \mathbb{R}^{n\times n}: A^\top A=I_n, \det(A)=1\}
$$
<details>
@@ -276,7 +276,7 @@ In [The random Matrix Theory of the Classical Compact groups](https://case.edu/a
$O(n)$ (the group of all $n\times n$ **orthogonal matrices** over $\mathbb{R}$),
$$
O(n)=\{A\in \mathbb{R}^{n\times n}: AA^T=A^T A=I_n\}
O(n)=\{A\in \mathbb{R}^{n\times n}: AA^\top=A^\top A=I_n\}
$$
$U(n)$ (the group of all $n\times n$ **unitary matrices** over $\mathbb{C}$),
@@ -296,7 +296,7 @@ $$
$Sp(2n)$ (the group of all $2n\times 2n$ symplectic matrices over $\mathbb{C}$),
$$
Sp(2n)=\{U\in U(2n): U^T J U=UJU^T=J\}
Sp(2n)=\{U\in U(2n): U^\top J U=UJU^\top=J\}
$$
where $J=\begin{pmatrix}

View File

@@ -8,10 +8,10 @@ The page's lemma is a fundamental result in quantum information theory that prov
The special orthogonal group $SO(n)$ is the set of all **distance preserving** linear transformations on $\mathbb{R}^n$.
It is the group of all $n\times n$ orthogonal matrices ($A^T A=I_n$) on $\mathbb{R}^n$ with determinant $1$.
It is the group of all $n\times n$ orthogonal matrices ($A^\top A=I_n$) on $\mathbb{R}^n$ with determinant $1$.
$$
SO(n)=\{A\in \mathbb{R}^{n\times n}: A^T A=I_n, \det(A)=1\}
SO(n)=\{A\in \mathbb{R}^{n\times n}: A^\top A=I_n, \det(A)=1\}
$$
<details>
@@ -22,7 +22,7 @@ In [The random Matrix Theory of the Classical Compact groups](https://case.edu/a
$O(n)$ (the group of all $n\times n$ **orthogonal matrices** over $\mathbb{R}$),
$$
O(n)=\{A\in \mathbb{R}^{n\times n}: AA^T=A^T A=I_n\}
O(n)=\{A\in \mathbb{R}^{n\times n}: AA^\top=A^\top A=I_n\}
$$
$U(n)$ (the group of all $n\times n$ **unitary matrices** over $\mathbb{C}$),
@@ -42,7 +42,7 @@ $$
$Sp(2n)$ (the group of all $2n\times 2n$ symplectic matrices over $\mathbb{C}$),
$$
Sp(2n)=\{U\in U(2n): U^T J U=UJU^T=J\}
Sp(2n)=\{U\in U(2n): U^\top J U=UJU^\top=J\}
$$
where $J=\begin{pmatrix}

View File

@@ -74,7 +74,7 @@ $c\in \mathbb{C}$.
The matrix transpose is defined by
$$
u^T=(a_1,a_2,\cdots,a_n)^T=\begin{pmatrix}
u^\top=(a_1,a_2,\cdots,a_n)^\top=\begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
@@ -694,7 +694,7 @@ $$
The unitary group $U(n)$ is the group of all $n\times n$ unitary matrices.
Such that $A^*=A$, where $A^*$ is the complex conjugate transpose of $A$. $A^*=(\overline{A})^T$.
Such that $A^*=A$, where $A^*$ is the complex conjugate transpose of $A$. $A^*=(\overline{A})^\top$.
#### Cyclic group $\mathbb{Z}_n$