update notations

This commit is contained in:
Trance-0
2025-11-04 12:43:23 -06:00
parent d24c0bdd9e
commit 614479e4d0
27 changed files with 333 additions and 100 deletions

View File

@@ -25,7 +25,7 @@ Let $A$ be an $m \times n$ matrix, then
* The column rank of $A$ is the dimension of the span of the columns in $\mathbb{F}^{m,1}$.
* The row range of $A$ is the dimension of the span of the row in $\mathbb{F}^{1,n}$.
> Transpose: $A^t=A^T$ refers to swapping rows and columns
> Transpose: $A^t=A^\top$ refers to swapping rows and columns
#### Theorem 3.56 (Column-Row Factorization)
@@ -64,7 +64,7 @@ Proof:
Note that by **Theorem 3.56**, if $A$ is $m\times n$ and has column rank $c$. $A=CR$ for some $C$ is a $m\times c$ matrix, $R$ is a $c\times n$ matrices, ut the rows of $CR$ are a linear combination of the rows of $R$, and row rank of $R\leq C$. So row rank $A\leq$ column rank of $A$.
Taking a transpose of matrix, then row rank of $A^T$ (column rank of $A$) $\leq$ column rank of $A^T$ (row rank $A$).
Taking a transpose of matrix, then row rank of $A^\top$ (column rank of $A$) $\leq$ column rank of $A^\top$ (row rank $A$).
So column rank is equal to row rank.

View File

@@ -39,13 +39,13 @@ $T$ is surjective $\iff range\ T=W\iff null\ T'=0\iff T'$ injective
Let $V,W$ be a finite dimensional vector space, $T\in \mathscr{L}(V,W)$
Then $M(T')=(M(T))^T$. Where the basis for $M(T)'$ are the dual basis to the ones for $M(T)$
Then $M(T')=(M(T))^\top$. Where the basis for $M(T)'$ are the dual basis to the ones for $M(T)$
#### Theorem 3.133
$col\ rank\ A=row\ rank\ A$
Proof: $col\ rank\ A=col\ rank\ (M(T))=dim\ range\ T=dim\ range\ T'=dim\ range\ T'=col\ rank\ (M(T'))=col\ rank\ (M(T)^T)=row\ rank\ (M(T))$
Proof: $col\ rank\ A=col\ rank\ (M(T))=dim\ range\ T=dim\ range\ T'=dim\ range\ T'=col\ rank\ (M(T'))=col\ rank\ (M(T)^\top)=row\ rank\ (M(T))$
## Chapter V Eigenvalue and Eigenvectors