update notations
This commit is contained in:
@@ -25,7 +25,7 @@ Let $A$ be an $m \times n$ matrix, then
|
||||
* The column rank of $A$ is the dimension of the span of the columns in $\mathbb{F}^{m,1}$.
|
||||
* The row range of $A$ is the dimension of the span of the row in $\mathbb{F}^{1,n}$.
|
||||
|
||||
> Transpose: $A^t=A^T$ refers to swapping rows and columns
|
||||
> Transpose: $A^t=A^\top$ refers to swapping rows and columns
|
||||
|
||||
#### Theorem 3.56 (Column-Row Factorization)
|
||||
|
||||
@@ -64,7 +64,7 @@ Proof:
|
||||
|
||||
Note that by **Theorem 3.56**, if $A$ is $m\times n$ and has column rank $c$. $A=CR$ for some $C$ is a $m\times c$ matrix, $R$ is a $c\times n$ matrices, ut the rows of $CR$ are a linear combination of the rows of $R$, and row rank of $R\leq C$. So row rank $A\leq$ column rank of $A$.
|
||||
|
||||
Taking a transpose of matrix, then row rank of $A^T$ (column rank of $A$) $\leq$ column rank of $A^T$ (row rank $A$).
|
||||
Taking a transpose of matrix, then row rank of $A^\top$ (column rank of $A$) $\leq$ column rank of $A^\top$ (row rank $A$).
|
||||
|
||||
So column rank is equal to row rank.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user