From 626b05ba2fdb6ddbb0b7dcfbffe23a83e65d1cd2 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Tue, 19 Nov 2024 17:02:27 -0600 Subject: [PATCH] fix typo --- pages/CSE442T/CSE442T_L11.md | 6 +++--- pages/CSE442T/index.mdx | 10 ++++++++++ 2 files changed, 13 insertions(+), 3 deletions(-) diff --git a/pages/CSE442T/CSE442T_L11.md b/pages/CSE442T/CSE442T_L11.md index c196923..1d17bfa 100644 --- a/pages/CSE442T/CSE442T_L11.md +++ b/pages/CSE442T/CSE442T_L11.md @@ -45,7 +45,7 @@ Let $\{X_n\}_n$ and $\{Y_n\}_n$ be probability ensembles (separate of dist over $\{X_n\}_n$ and $\{Y_n\}_n$ are computationally **in-distinguishable** if for all non-uniform p.p.t adversary $D$ ("distinguishers") $$ -|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:d(y)=1]|<\varepsilon(n) +|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:D(y)=1]|<\varepsilon(n) $$ this basically means that the probability of finding any pattern in the two array is negligible. @@ -53,7 +53,7 @@ this basically means that the probability of finding any pattern in the two arra If there is a $D$ such that $$ -|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:d(y)=1]|\geq \mu(n) +|P[x\gets X_n:D(x)=1]-P[y\gets Y_n:D(y)=1]|\geq \mu(n) $$ then $D$ is distinguishing with probability $\mu(n)$ @@ -98,7 +98,7 @@ Example: Building distinguishers -1. $X_n$: always outputs $0^n$, $D$: [outputs $1$ is $t=0^n$] +1. $X_n$: always outputs $0^n$, $D$: [outputs $1$ if $t=0^n$] $$ \vert P[t\gets X_n:D(t)=1]-P[t\gets U_n:D(t)=1]\vert=1-\frac{1}{2^n}\approx 1 $$ diff --git a/pages/CSE442T/index.mdx b/pages/CSE442T/index.mdx index e69de29..964ec34 100644 --- a/pages/CSE442T/index.mdx +++ b/pages/CSE442T/index.mdx @@ -0,0 +1,10 @@ +# CSE 442T + +## Course Description + +This course is an introduction to the theory of cryptography. Topics include: + +One-way functions, trapdoor functions, and hash functions. + +Instructor: +