update and fix typo
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
# Math4121 Lecture 18
|
||||
# Math 4121 Lecture 18
|
||||
|
||||
## Continue
|
||||
|
||||
@@ -10,7 +10,7 @@ By modifying this example, we can find similar with any outer content between 0
|
||||
|
||||
#### Definition: Perfect Set
|
||||
|
||||
$S\subsetes[0,1]$ is perfect if $S=S'$.
|
||||
$S\subseteq[0,1]$ is perfect if $S=S'$.
|
||||
|
||||
Example:
|
||||
|
||||
@@ -28,7 +28,7 @@ Let $C_0=[0,1]$, $C_1=[0,\frac{1}{3}]\cup[\frac{2}{3}]$ ...
|
||||
Continuing this process indefinitely, we define the Cantor set as
|
||||
|
||||
$$
|
||||
C=\Bigcap_{n=0}^{\infty}C_n
|
||||
C=\bigcap_{n=0}^{\infty}C_n
|
||||
$$
|
||||
|
||||
1. $C_n\subseteq C_{n-1}$
|
||||
|
||||
Reference in New Issue
Block a user