update and fix typo
This commit is contained in:
@@ -34,11 +34,7 @@ If $C$ is cover of $T$, then $S\subseteq T\subseteq C$, so $C$ is a cover of $S$
|
||||
|
||||
QED
|
||||
|
||||
#### Theorem Osgorod's Lemma
|
||||
#### Theorem Osgood's Lemma
|
||||
|
||||
If $S$ is closed and bounded, then
|
||||
|
||||
$$
|
||||
\lim_{k\to \infty} c_e(S_k)=c_e(S)
|
||||
$$
|
||||
Let $S$ be a closed, bounded set in $\mathbb{R}$, and $S_1\subseteq S_2\subseteq \ldots$, and $S=\bigcup_{n=1}^{\infty} S_n$. Then $\lim_{k\to\infty} c_e(S_k)=c_e(S)$.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user