update and fix typo

This commit is contained in:
Trance-0
2025-03-03 12:34:00 -06:00
parent e6e303aafd
commit 66d09aaff2
14 changed files with 123 additions and 21 deletions

View File

@@ -34,11 +34,7 @@ If $C$ is cover of $T$, then $S\subseteq T\subseteq C$, so $C$ is a cover of $S$
QED
#### Theorem Osgorod's Lemma
#### Theorem Osgood's Lemma
If $S$ is closed and bounded, then
$$
\lim_{k\to \infty} c_e(S_k)=c_e(S)
$$
Let $S$ be a closed, bounded set in $\mathbb{R}$, and $S_1\subseteq S_2\subseteq \ldots$, and $S=\bigcup_{n=1}^{\infty} S_n$. Then $\lim_{k\to\infty} c_e(S_k)=c_e(S)$.