From 67c92e20bd53537cafe9560bec71368944164e16 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Wed, 29 Jan 2025 13:02:25 -0600 Subject: [PATCH] update --- pages/Math4111/Math4111_L24.md | 22 ++++++++ pages/Math4121/Math4121_L7.md | 97 +++++++++++++++++++++++++++++++++- 2 files changed, 118 insertions(+), 1 deletion(-) diff --git a/pages/Math4111/Math4111_L24.md b/pages/Math4111/Math4111_L24.md index 3f66ca7..a50a313 100644 --- a/pages/Math4111/Math4111_L24.md +++ b/pages/Math4111/Math4111_L24.md @@ -133,6 +133,28 @@ By Theorem 2.28, $\sup f(X)$ and $\inf f(X)$ exist and are in $f(X)$. Let $p_0\i EOP +--- + +Supplemental materials: + +_I found this section is not covered in the lecture but is used in later chapters._ + +#### Definition 4.18 + +Let $f$ be a mapping of a metric space $X$ into a metric space $Y$. $f$ is **uniformly continuous** on $X$ if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall x, y\in X$, $|x-y| < \delta \implies |f(x)-f(y)| < \epsilon$. + +#### Theorem 4.19 + +If $f$ is a continuous mapping of a compact metric space $X$ into a metric space $Y$, then $f$ is uniformly continuous on $X$. + +Proof: + +See the textbook. + +EOP + +--- + ### Continuity and connectedness > **Definition 2.45**: Let $X$ be a metric space. $A,B\subset X$ are **separated** if $\overline{A}\cap B = \phi$ and $\overline{B}\cap A = \phi$. diff --git a/pages/Math4121/Math4121_L7.md b/pages/Math4121/Math4121_L7.md index 9b385d4..f8f848b 100644 --- a/pages/Math4121/Math4121_L7.md +++ b/pages/Math4121/Math4121_L7.md @@ -1 +1,96 @@ -# Lecture 7 \ No newline at end of file +# Lecture 7 + +## Continue on Chapter 6 + +### Riemann integrable + +#### Theorem 6.6 + +A function $f$ is Riemann integrable with respect to $\alpha$ on $[a, b]$ if and only if for every $\epsilon > 0$, there exists a partition $P$ of $[a, b]$ such that $U(f, P, \alpha) - L(f, P, \alpha) < \epsilon$. + +Proof: + +$\impliedby$ + +For every $P$, + +$$ +L(f, P, \alpha) \leq \underline{\int}_a^b f d\alpha \leq \overline{\int}_a^b f d\alpha \leq U(f, P, \alpha) +$$ + +So if $f$ is Riemann integrable with respect to $\alpha$ on $[a, b]$, then for every $\epsilon > 0$, there exists a partition $P$ such that + +$$ +0 \leq \overline{\int}_a^b f d\alpha - \underline{\int}_a^b f d\alpha \leq U(f, P, \alpha) - L(f, P, \alpha) < \epsilon +$$ + +Thus $0 \leq \overline{\int}_a^b f d\alpha - \underline{\int}_a^b f d\alpha < \epsilon,\forall \epsilon > 0$. + +Then, $\overline{\int}_a^b f d\alpha = \underline{\int}_a^b f d\alpha$. + +So, $f$ is Riemann integrable with respect to $\alpha$ on $[a, b]$. + +$\implies$ + +If $f\in \mathscr{R}(\alpha)$ on $[a, b]$, then $f$ is Riemann integrable with respect to $\alpha$ on $[a, b]$. + +Then by the definition of Riemann integrable, $\sup_{P} L(f, P, \alpha) =\int^b_a f d\alpha = \inf_{P} U(f, P, \alpha)$. + +Given any $\epsilon > 0$, by definition of infimum and supremum, there exists a partition $P_1,P_2$ such that + +$$ +\int^b_a f d\alpha - \frac{\epsilon}{2} < L(f, P_1, \alpha) \leq \sup_{P} L(f, P, \alpha) = \inf_{P} U(f, P, \alpha) < \int^b_a f d\alpha + \frac{\epsilon}{2} +$$ + +Taking $P = P_1 \cup P_2$, by [Theorem 6.4](https://notenextra.trance-0.com/Math4121/Math4121_L6#theorem-64) we have + +$$ +U(f, P, \alpha) - L(f, P, \alpha) \leq \left( \int^b_a f d\alpha + \frac{\epsilon}{2} \right) - \left( \int^b_a f d\alpha - \frac{\epsilon}{2} \right) = \epsilon +$$ + +So $f$ is Riemann integrable with respect to $\alpha$ on $[a, b]$. + +EOP + +#### Theorem 6.8 + +If $f$ is continuous on $[a, b]$, then $f$ is Riemann integrable with respect to $\alpha$ on $[a, b]$. + +Proof: + +> Main idea: +> +> $$U(f, P, \alpha) - L(f, P, \alpha) = \sum_{i=1}^n \left( M_i - m_i \right) \Delta \alpha_i$$ +> +> If we can make $M_i - m_i$ small enough, then $U(f, P, \alpha) - L(f, P, \alpha)$ can be made arbitrarily small. +> +> Since $M_i=\sup_{x\in [t_{i-1}, t_i]} f(x)$ and $m_i=\inf_{x\in [t_{i-1}, t_i]} f(x)$, we can make $M_i - m_i$ small enough by making the partition $P$ sufficiently fine. + +Suppose we can find a partition $P$ such that $M_i - m_i < \eta$. Then $U(f, P, \alpha) - L(f, P, \alpha) \leq\eta\sum_{i=1}^n \Delta \alpha_i = \eta (\alpha(b)-\alpha(a))$. + +> Let $\epsilon >0$ and choose $\eta = \frac{\epsilon}{\alpha(b)-\alpha(a)}$. Then there exists a partition $P$ such that $U(f, P, \alpha) - L(f, P, \alpha) < \epsilon$. + +Since $f$ is continuous on $[a, b]$ (a compact set), then $f$ is uniformly continuous on $[a, b]$. [Theorem 4.19](https://notenextra.trance-0.com/Math4111/Math4111_L24#theorem-419) + +> If $f$ is continuous on $x$, then $\forall \epsilon > 0$, $\exists \delta > 0$ such that $|x-y| < \delta \implies |f(x)-f(y)| < \epsilon$. +> +> If $f$ is continuous on $[a, b]$, then $f$ is continuous at $x,\forall x\in [a, b]$. + +So, there exists a $\delta > 0$ such that for all $x, t\in [a, b]$ with $|x-t| < \delta$, we have $|f(x)-f(t)| < \eta$. + +Let $P=\{x_0, x_1, \cdots, x_n\}$ be a partition of $[a, b]$ such that $\Delta x_i < \delta$ for all $i$. + +So, $\sup_{x,t\in [x_{i-1}, x_i]} |f(x)-f(t)| < \eta$ for all $i$. + +$$ +\begin{aligned} +\sup_{x,t\in [x_{i-1}, x_i]} |f(x)-f(t)| &= \sup_{x,t\in [x_{i-1}, x_i]} f(x)-f(t) \\ +&= \sup_{x\in [x_{i-1}, x_i]} f(x)-\sup_{t\in [x_{i-1}, x_i]} -f(t) \\ +&=\sup_{x\in [x_{i-1}, x_i]} f(x)-\inf_{t\in [x_{i-1}, x_i]} f(t) \\ +&= M_i - m_i +\end{aligned} +$$ + +So, $f$ is Riemann integrable with respect to $\alpha$ on $[a, b]$. + +EOP