From 6805462262967083755f4cae846cbca4b2f5099e Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Mon, 24 Mar 2025 10:54:32 -0500 Subject: [PATCH] update --- docker-compose.yaml | 2 +- pages/Math4121/Math4121_L25.md | 4 +- pages/Math4121/Math4121_L26.md | 94 +++++++++++++++++++++++++++++++++- 3 files changed, 95 insertions(+), 5 deletions(-) diff --git a/docker-compose.yaml b/docker-compose.yaml index 4d9633c..c517a7c 100644 --- a/docker-compose.yaml +++ b/docker-compose.yaml @@ -3,7 +3,7 @@ services: build: context: ./ dockerfile: ./Dockerfile - image: trance0/notenextra:v1.1.8 + image: trance0/notenextra:v1.1.9 restart: on-failure:5 ports: - 13000:3000 diff --git a/pages/Math4121/Math4121_L25.md b/pages/Math4121/Math4121_L25.md index 9686cd8..28a36a0 100644 --- a/pages/Math4121/Math4121_L25.md +++ b/pages/Math4121/Math4121_L25.md @@ -2,7 +2,7 @@ ## Continue on Measure Theory -### Borel Mesure +### Borel Measure Finite additivity of Jordan content, i.e. for any $\{S_j\}_{j=1}^N$ pairwise disjoint sets and Jordan measurable, then @@ -73,5 +73,3 @@ SVC(3) is Jordan measurable, but $|SVC(3)|=\mathfrak{c}$. so $|\mathscr{P}(SVC(3 But for any $S\subset \mathscr{P}(SVC(3))$, $c_e(S)\leq c_e(SVC(3))=0$ so $S$ is Jordan measurable. However, there are $\mathfrak{c}$ many intervals and $\mathcal{B}$ is generated by countable operations from intervals. - - diff --git a/pages/Math4121/Math4121_L26.md b/pages/Math4121/Math4121_L26.md index 9ba5345..7753ac1 100644 --- a/pages/Math4121/Math4121_L26.md +++ b/pages/Math4121/Math4121_L26.md @@ -1 +1,93 @@ -# Lecture 26 \ No newline at end of file +# Math4121 Lecture 26 + +## Lebesgue Measure + +### Lebesgue's Integration + +Partition on the y-axis, let $l$ be the minimum of $f(x)$ on the $y$-axis, $L$ be the maximum of $f(x)$ on the $y$-axis. + +$l=l_0