diff --git a/content/Math4202/Math4202_L9.md b/content/Math4202/Math4202_L9.md new file mode 100644 index 0000000..1fee6fe --- /dev/null +++ b/content/Math4202/Math4202_L9.md @@ -0,0 +1,145 @@ +# Math4202 Topology II (Lecture 9) + +## Algebraic Topology + +### Path homotopy + +Consider the space of paths up to homotopy equivalence. + +$$ +\operatorname{Path}/\simeq_p(X) =\Pi_1(X) +$$ + +We want to impose some group structure on $\operatorname{Path}/\simeq_p(X)$. + +Consider the $*$ operation on $\operatorname{Path}/\simeq_p(X)$. + +Let $f,g:[0,1]\to X$ be two paths, where $f(0)=a$, $f(1)=g(0)=b$ and $g(1)=c$. + +$$ +f*g:[0,1]\to X,\quad f*g(t)=\begin{cases} +f(2t) & 0\leq t\leq \frac{1}{2}\\ +g(2t-1) & \frac{1}{2}\leq t\leq 1 +\end{cases} +$$ + +This connects our two paths. + +#### Definition for product of paths + +Given $f$ a path in $X$ from $x_0$ to $x_1$ and $g$ a path in $X$ from $x_1$ to $x_2$. + +Define the product $f*g$ of $f$ and $g$ to be the map $h:[0,1]\to X$. + +#### Definition for equivalent classes of paths + +$\Pi_1(X,x)$ is the equivalent classes of paths starting and ending at $x$. + +On $\Pi_1(X,x)$,, we define $\forall [f],[g],[f]*[g]=[f*g]$. + +$$ +[f]\coloneqq \{f_i:[0,1]\to X|f_0(0)=f(0),f_i(1)=f(1)\} +$$ + +#### Lemma + +If we have some path $k:X\to Y$ is a continuous map, and if $F$ is path homotopy between $f$ and $f'$ in $X$, then $k\circ F$ is path homotopy between $k\circ f$ and $k\circ f'$ in $Y$. + +If $k:X\to Y$ is a continuous map, and $f,g$ are two paths in $X$ with $f(1)=g(0)$, then + +$$ +(k\circ f)*(k\circ g)=k\circ(f*g) +$$ + +
+Proof + +We check the definition of path homotopy. + +$k\circ F:I\times I\to Y$ is continuous. + +$k\circ F(s,0)=k(F(s,0))=k(f(s))=k\circ f(s)$. + +$k\circ F(s,1)=k(F(s,1))=k(f'(s))=k\circ f'(s)$. + +$k\circ F(0,t)=k(F(0,t))=k(f(0))=k(x_0$. + +$k\circ F(1,t)=k(F(1,t))=k(f'(1))=k(x_1)$. + +Therefore $k\circ F$ is path homotopy between $k\circ f$ and $k\circ f'$ in $Y$. + +--- + +For the second part of the lemma, we proceed from the definition. + +$$ +(k\circ f)*(k\circ g)(t)=\begin{cases} +k\circ f(2t) & 0\leq t\leq \frac{1}{2}\\ +k\circ g(2t-1) & \frac{1}{2}\leq t\leq 1 +\end{cases} +$$ + +and + +$$ +k\circ(f*g)=k(f*g(t))=k\left(\begin{cases} +f(2t) & 0\leq t\leq \frac{1}{2}\\ +g(2t-1) & \frac{1}{2}\leq t\leq 1 +\end{cases}\right)=\begin{cases} +k(f(2t))=k\circ f(2t) & 0\leq t\leq \frac{1}{2}\\ +k(g(2t-1))=k\circ g(2t-1) & \frac{1}{2}\leq t\leq 1 +\end{cases} +$$ + +
+ +#### Theorem for properties of product of paths + +1. If $f\simeq_p f_1, g\simeq_p g_1$, then $f*g\simeq_p f_1*g_1$. (Product is well-defined) +2. $([f]*[g])*[h]=[f]*([g]*[h])$. (Associativity) +3. Let $e_{x_0}$ be the constant path from $x_0$ to $x_0$, $e_{x_1}$ be the constant path from $x_1$ to $x_1$. Suppose $f$ is a path from $x_0$ to $x_1$. + $$ + [e_{x_0}]*[f]=[f],\quad [f]*[e_{x_1}]=[f] + $$ + (Right and left identity) +4. Given $f$ in $X$ a path from $x_0$ to $x_1$, we define $\bar{f}$ to be the path from $x_1$ to $x_0$ where $\bar{f}(t)=f(1-t)$. + $$ + f*\bar{f}=e_{x_0},\quad \bar{f}*f=e_{x_1} + $$ + $$ + [f]*[\bar{f}]=[e_{x_0}],\quad [\bar{f}]*[f]=[e_{x_1}] + $$ + +
+Proof + +(1) If $f\simeq_p f_1$, $g\simeq_p g_1$, then $f*g\simeq_p f_1*g_1$. + +Let $F$ be homotopy between $f$ and $f_1$, $G$ be homotopy between $g$ and $g_1$. + +We can define + +$$ +F*G:[0,1]\times [0,1]\to X,\quad F*G(s,t)=\left(F(-,t)*G(-,t)\right)(s)=\begin{cases} +F(2s,t) & 0\leq s\leq \frac{1}{2}\\ +G(2s-1,t) & \frac{1}{2}\leq s\leq 1 +\end{cases} +$$ + +$F*G$ is a homotopy between $f*g$ and $f_1*g_1$. + +We can check this by enumerating the cases from definition of homotopy. + +--- + +Continue next time. + +
+ +#### Definition for the fundamental group + +The fundamental group of $X$ at $x$ is defined to be + +$$ +(\Pi_1(X,x),*) +$$ \ No newline at end of file diff --git a/content/Math4202/_meta.js b/content/Math4202/_meta.js index 81b9a64..f126ca7 100644 --- a/content/Math4202/_meta.js +++ b/content/Math4202/_meta.js @@ -11,4 +11,5 @@ export default { Math4202_L6: "Topology II (Lecture 6)", Math4202_L7: "Topology II (Lecture 7)", Math4202_L8: "Topology II (Lecture 8)", + Math4202_L9: "Topology II (Lecture 9)", }