diff --git a/pages/Math4121/Math4121_L12.md b/pages/Math4121/Math4121_L12.md index 6c6b1b2..7835175 100644 --- a/pages/Math4121/Math4121_L12.md +++ b/pages/Math4121/Math4121_L12.md @@ -1 +1,99 @@ -# Lecture 12 \ No newline at end of file +# Lecture 12 + +## Chapter 7: Uniform Convergence and Integrals + +Our goal is to solve problems like this: + +Let + +$$ +s_{n,m}=\frac{m}{m+n} +$$ + +The different order of computation gives different results: + +$$ +\lim_{n\to\infty}\lim_{m\to\infty}s_{n,m}=1 +$$ + +$$ +\lim_{m\to\infty}\lim_{n\to\infty}s_{n,m}=0 +$$ + +We cannot always switch the order of limits. We cannot also do this on derivatives. + +### Examples + +#### Example 7.4 + +$$ +f_m(x)=\lim_{n\to\infty}cos(m!x\pi)^{2n} +$$ + + +If $cos(m!x\pi)^{2n}=\pm 1$, then $f_m(x)=1$. + +If not, then $|cos(m!x\pi)^{2n}|<1$. + +$$ +f_m(x)=\begin{cases} +1 & \text{if } m!x\text{ is an integer} \\ +0 & \text{if } \text{otherwise} +\end{cases} +$$ + +This function "raise" the fractions with all denominators less than $m$. + +$$ +\lim_{m\to\infty}f_m(x)= +\begin{cases} +1 & \text{if } x\text{ is an rational number} \\ +0 & \text{if } \text{otherwise} +\end{cases} +$$ + +So this function is not Riemann integrable. (show in homework) + +But + +$$ +g_{n,m}(x)=cos(m!x\pi)^{2n} +$$ + +is continuous, and + +$$ +\lim_{m\to\infty}\lim_{n\to\infty}g_{n,m}(x)=f(x) +$$ + +So the function is not Riemann integrable. + +#### Definition 7.7 + +A sequence of functions $\{f_n\}$ **converges uniformly** to $f$ on set $E$ if + +$$ +\forall \epsilon>0, \exists N, \forall n\geq N, \forall x\in E, |f_n(x)-f(x)|<\epsilon +$$ + +If $E$ is just a point, then it is the common definition of convergence. + +_If you have uniform convergence, then you can switch the order of limits._ + +### Uniform Convergence and Integrals + +#### Theorem 7.16 + +Suppose $\{f_n\}\in\mathscr{R}(\alpha)$ on $[a,b]$ that converges uniformly to $f$ on $[a,b]$. Then $f\in\mathscr{R}(\alpha)$ on $[a,b]$ and + +$$ +\int_a^b f(x)d\alpha=\lim_{n\to\infty}\int_a^b f_n(x)d\alpha +$$ + +#### Proof + +Define $\epsilon_n=\sup_{x\in[a,b]}|f_n(x)-f(x)|$. + +By uniform convergence, $\epsilon_n\to 0$ as $n\to\infty$. + +CONTINUE HERE