diff --git a/content/Math4201/Math4201_L9.md b/content/Math4201/Math4201_L9.md
new file mode 100644
index 0000000..f4fe894
--- /dev/null
+++ b/content/Math4201/Math4201_L9.md
@@ -0,0 +1,172 @@
+# Math4201 Lecture 9
+
+## Convergence of sequences
+
+Let $X$ be a topological space and $\{x_n\}_{n\in\mathbb{N}_+}$ be a sequence of points in $X$. WE say $x_n\to x$ as $n\to \infty$ ($x_n$ converges to $x$ as $n\to \infty$)
+
+if for any open neighborhood $U$ of $x$, there exists $N\in\mathbb{N}_+$ such that $\forall n\geq N, x_n\in U$.
+
+
+Example of convergence of sequences
+
+Let $X=\{a,b,c\}$ with the topology $\mathcal{T}=\{\emptyset, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}\}$
+
+Let $x_n=b$ for all $n\in\mathbb{N}_+$. Then $x_n\to b$ as $n\to \infty$.
+
+Moreover, $x_n\to a$ as $n\to \infty$ since any open neighborhood of $a$ ($\{a,b\}$,$\{a,b,c\}$) contains $b$.
+
+Without loss of generality, $x_n\to c$ as $n\to \infty$ since any open neighborhood of $c$ ($\{b,c\}$,$\{a,b,c\}$) contains $b$.
+
+> You may find convergence of sequences in more than one point.
+
+Let $x_n=a$ for all $n\in\mathbb{N}_+$. Then $x_n\to a$ as $n\to \infty$ (take $U=\{a,b\}$)
+
+A non-example of convergence of sequences:
+
+Let $x_n=\begin{cases}a, & n\text{ is even} \\ c, & n\text{ is odd}\end{cases}$. Then $x_n$ does not converge to any point in $X$. So this sequence does not have a limit in $(X,\mathcal{T})$.
+
+
+
+### More special topologies
+
+#### Hausdorff space
+
+A topological space $(X,\mathcal{T})$ is a Hausdorff space if for any two distinct points $x,y\in X$, there exist open neighborhoods $U$ and $V$ of $x$ and $y$ respectively such that $U\cap V=\emptyset$.
+
+
+Non-example of Hausdorff space
+
+Let $X=\{a,b,c\}$ with the topology $\mathcal{T}=\{\emptyset, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}\}$
+
+Let $x=a,y=b$. Then they don't have disjoint open neighborhoods.
+
+This topology is not a Hausdorff space.
+
+
+
+If a topological space is a Hausdorff space, then every sequence has a unique limit point or have no limit point.
+
+#### Properties of Hausdorff space
+
+Let $(X,\mathcal{T})$ be a Hausdorff space. Then every sequence $\{x_n\}_{n\in\mathbb{N}_+}$ converges to $x$ and $y$, then $x=y$.
+
+> [!TIP]
+>
+> We want to show if $x\neq y$, then there exists an open neighborhood $U$ of $x$ and $V$ of $y$ such that $U\cap V=\emptyset$.
+
+
+Proof
+
+We proceed by contradiction.
+
+Suppose $x\neq y$, then by definition of Hausdorff space, there exists an open neighborhood $U$ of $x$ and $V$ of $y$ such that $U\cap V=\emptyset$.
+
+If $x_n$ converges to $x$, then for any open neighborhood $U_x$ of $x$, there exists $N_x\in\mathbb{N}_+$ such that $\forall n\geq N_x, x_n\in U_x$. Similarly, for any open neighborhood $U_y$ of $y$, there exists $N_y\in\mathbb{N}_+$ such that $\forall n\geq N_y, x_n\in U_y$.
+
+Then we can find $N=max\{N_x,N_y\}$ such that $x_n\in U_x\cap U_y$ for all $n\geq N$. This contradicts the assumption that $U\cap V=\emptyset$.
+
+Therefore, $x=y$.
+
+
+
+#### Properties of closed singleton
+
+Let $(X,\mathcal{T})$ be a Hausdorff topological space. Then $\forall x\in X$, $\{x\}$ is a closed set.
+
+
+Non-example of closed singleton
+
+Let $X=\{a,b,c\}$ with the topology $\mathcal{T}=\{\emptyset, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}\}$
+
+Then $\{b\}$ is not a closed set, since $X\setminus \{b\}=\{a,c\}$ is not an open set.
+
+
+
+
+Proof
+
+We need to show that $A=X\setminus \{x\}$ is an open set.
+
+Take $y\in A$, then by the assumption, $x$ and $y$ have disjoint open neighborhoods $U_x$ and $V_y$ respectively. $x\in U_x$ and $y\in V_y$ and $U_x\cap V_y=\emptyset$.
+
+So $x\notin V_y$, $y\in V_y$. So $A\subseteq\bigcup_{y\in A,y\neq x} V_y$.
+
+Since $\forall V_y,x\notin V_y$, So $A\subseteq\bigcup_{y\in A,y\neq x} V_y$.
+
+So $A=\bigcup_{y\in A,y\neq x} V_y$ is an arbitrary union of open sets, so $A$ is an open set.
+
+Therefore, $\{x\}$ is a closed set.
+
+
+
+## Continuous
+
+### Continuous functions
+
+#### Definition for continuous functions
+
+Let $(X,\mathcal{T})$ and $(Y,\mathcal{T}')$ be topological spaces and $f:X\to Y$. We say that $f$ is continuous if for every open set $V\in Y$, $f^{-1}(V)\coloneqq\{x\in X: f(x)\in V\}$ is open in $X$.
+
+That is, $\forall V\in \mathcal{T}', f^{-1}(V)\in \mathcal{T}$.
+
+#### Definition for point-wise continuity
+
+Let $(X,\mathcal{T})$ and $(Y,\mathcal{T}')$ be topological spaces and $f:X\to Y$. We say that $f$ is continuous at $x\in X$ if for every open set $V\in \mathcal{T}'$ such that $f(x)\in V$, there exists an open set $U\in \mathcal{T}$ such that $x\in U$ and $f(U)\subseteq V$. ($f^{-1}(V)$ contains an open neighborhood of $x$)
+
+#### Lemma for continuous functions
+
+$f:X\to Y$ is continuous if and only if $\forall x\in X$, $f$ is continuous at $x$.
+
+
+Proof
+
+$\Rightarrow$:
+
+Trivial
+
+$\Leftarrow$:
+
+Take an open set $V\in \mathcal{T}'$. Then for any point $x\in f^{-1}(V)$, we have $f(x)\in V$.
+
+In particular, by definition of continuity at $x$, there exists an open set $U_x$ of $x$ such that $U_x\subseteq f^{-1}(V)$.
+
+Then $f^{-1}(V)=\bigcup_{x\in f^{-1}(V)} U_x$ is an arbitrary union of open sets, so $f^{-1}(V)$ is open in $X$.
+
+
+
+
+Example of continuous functions
+
+Let $X$ be any set and $\mathcal{T}$ be the discrete topology on $X$, $\mathcal{T}'$ be the trivial topology on $X$.
+
+Let $f:(X,\mathcal{T})\to (X,\mathcal{T}')$ be the identity function. Then $f$ is continuous.
+
+Since forall $V\in \mathcal{T}'$, $V$ is open in $X$, we can find $f^{-1}(V)$ is open in $X$. (only neet to test $X,\emptyset$)
+
+In general, if $T$ is a finer than $T'$, then $f:(X,\mathcal{T})\to (X,\mathcal{T}')$ be the identity map is continuous.
+
+However, if we let $f:(X,\mathcal{T}')\to (X,\mathcal{T})$ be the identity function, then $f$ is not continuous unless $X$ is a singleton.
+
+
+
+#### Definition for constant maps
+
+Let $X,Y$ be topological spaces and $y_0\in Y$, $f:X\to Y$ is defined by $f(x)=y_0$ for all $x\in X$. Then $f$ is continuous.
+
+
+Proof
+
+Take an open set $V\in \mathcal{T}'$. $f^{-1}(V)=\begin{cases}X, & y_0\in V \\ \emptyset, & y_0\notin V\end{cases}$ is open in $X$. (by definition of topology, $X,\emptyset$ are open in $X$)
+
+
+
+
+Example of inclusion maps
+
+Let $X$ be a topological space and $A\subseteq X$ equipped with the subspace topology.
+
+Let $f:A\to X$ be the inclusion map $f(x)=x$ for all $x\in A$.
+
+Then take $V\subseteq X$ be an open set. $f^{-1}(V)=V\cap A\subseteq A$ is open in $A$ (by subspace topology).
+
+
diff --git a/content/Math4201/_meta.js b/content/Math4201/_meta.js
index df84dbe..0a9d019 100644
--- a/content/Math4201/_meta.js
+++ b/content/Math4201/_meta.js
@@ -11,4 +11,5 @@ export default {
Math4201_L6: "Topology I (Lecture 6)",
Math4201_L7: "Topology I (Lecture 7)",
Math4201_L8: "Topology I (Lecture 8)",
+ Math4201_L9: "Topology I (Lecture 9)",
}