check errors
This commit is contained in:
@@ -122,4 +122,4 @@ We define $\mathbb{R}$ to be the unique ordered field with $LUBP$. (The existenc
|
|||||||
#### Theorem 1.20
|
#### Theorem 1.20
|
||||||
|
|
||||||
1. (Archimedean property) If $x,y\in \mathbb{R}$ and $x>0$, then $\exists n\in \mathbb{N}$ such that $nx>y$.
|
1. (Archimedean property) If $x,y\in \mathbb{R}$ and $x>0$, then $\exists n\in \mathbb{N}$ such that $nx>y$.
|
||||||
2. ($\mathbb{Q}$ is dense in $\mathbb{R}$) If $x,y\in \mathbb{R}$ and $x<y$, then $\exists p\in \mathbb{Q}$$ such that $x<p<y$.
|
2. ($\mathbb{Q}$ is dense in $\mathbb{R}$) If $x,y\in \mathbb{R}$ and $x<y$, then $\exists p\in \mathbb{Q}$ such that $x<p<y$.
|
||||||
|
|||||||
@@ -43,7 +43,7 @@ EOP
|
|||||||
|
|
||||||
### $\mathbb{Q}$ is dense in $\mathbb{R}$
|
### $\mathbb{Q}$ is dense in $\mathbb{R}$
|
||||||
|
|
||||||
$\mathbb{Q}$ is dense in $\mathbb{R}$) If $x,y\in \mathbb{R}$ and $x<y$, then $\exists p\in \mathbb{Q}$$ such that $x<p<y$.
|
$\mathbb{Q}$ is dense in $\mathbb{R}$ if $x,y\in \mathbb{R}$ and $x<y$, then $\exists p\in \mathbb{Q}$ such that $x<p<y$.
|
||||||
|
|
||||||
Some thoughts:
|
Some thoughts:
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user