check errors
This commit is contained in:
@@ -122,4 +122,4 @@ We define $\mathbb{R}$ to be the unique ordered field with $LUBP$. (The existenc
|
||||
#### Theorem 1.20
|
||||
|
||||
1. (Archimedean property) If $x,y\in \mathbb{R}$ and $x>0$, then $\exists n\in \mathbb{N}$ such that $nx>y$.
|
||||
2. ($\mathbb{Q}$ is dense in $\mathbb{R}$) If $x,y\in \mathbb{R}$ and $x<y$, then $\exists p\in \mathbb{Q}$$ such that $x<p<y$.
|
||||
2. ($\mathbb{Q}$ is dense in $\mathbb{R}$) If $x,y\in \mathbb{R}$ and $x<y$, then $\exists p\in \mathbb{Q}$ such that $x<p<y$.
|
||||
|
||||
@@ -43,7 +43,7 @@ EOP
|
||||
|
||||
### $\mathbb{Q}$ is dense in $\mathbb{R}$
|
||||
|
||||
$\mathbb{Q}$ is dense in $\mathbb{R}$) If $x,y\in \mathbb{R}$ and $x<y$, then $\exists p\in \mathbb{Q}$$ such that $x<p<y$.
|
||||
$\mathbb{Q}$ is dense in $\mathbb{R}$ if $x,y\in \mathbb{R}$ and $x<y$, then $\exists p\in \mathbb{Q}$ such that $x<p<y$.
|
||||
|
||||
Some thoughts:
|
||||
|
||||
|
||||
Reference in New Issue
Block a user