check errors

This commit is contained in:
Zheyuan Wu
2024-12-08 14:38:45 -06:00
parent f5f0e2a5c3
commit 6ffcf9e50d
2 changed files with 2 additions and 2 deletions

View File

@@ -122,4 +122,4 @@ We define $\mathbb{R}$ to be the unique ordered field with $LUBP$. (The existenc
#### Theorem 1.20
1. (Archimedean property) If $x,y\in \mathbb{R}$ and $x>0$, then $\exists n\in \mathbb{N}$ such that $nx>y$.
2. ($\mathbb{Q}$ is dense in $\mathbb{R}$) If $x,y\in \mathbb{R}$ and $x<y$, then $\exists p\in \mathbb{Q}$$ such that $x<p<y$.
2. ($\mathbb{Q}$ is dense in $\mathbb{R}$) If $x,y\in \mathbb{R}$ and $x<y$, then $\exists p\in \mathbb{Q}$ such that $x<p<y$.

View File

@@ -43,7 +43,7 @@ EOP
### $\mathbb{Q}$ is dense in $\mathbb{R}$
$\mathbb{Q}$ is dense in $\mathbb{R}$) If $x,y\in \mathbb{R}$ and $x<y$, then $\exists p\in \mathbb{Q}$$ such that $x<p<y$.
$\mathbb{Q}$ is dense in $\mathbb{R}$ if $x,y\in \mathbb{R}$ and $x<y$, then $\exists p\in \mathbb{Q}$ such that $x<p<y$.
Some thoughts: