partial update
This commit is contained in:
@@ -553,7 +553,18 @@ $$
|
||||
|
||||
### Power function
|
||||
|
||||
### Inverse trigonometric functions
|
||||
For any two complex numbers $a,b$, we can define the power function as
|
||||
|
||||
$$
|
||||
a^b = e^{b\log a}
|
||||
$$
|
||||
|
||||
> Example:
|
||||
>
|
||||
> $$i^i=e^{i\ln i}=e^{i(\ln 1+i\frac{\pi}{2})}=e^{-\frac{\pi}{2}} $$
|
||||
>
|
||||
> $$e^{i\pi}=-1$$
|
||||
|
||||
|
||||
## Chapter 5 Power Series
|
||||
|
||||
@@ -573,13 +584,46 @@ $$
|
||||
\sum_{n=0}^\infty z^n = \frac{1}{1-z}, \quad |z|<1
|
||||
$$
|
||||
|
||||
|
||||
### Radius/Region of convergence
|
||||
|
||||
The radius of convergence of a power series is the largest number $R$ such that the series converges for all $z$ with $|z-z_0|<R$.
|
||||
|
||||
The region of convergence of a power series is the set of all points $z$ such that the series converges.
|
||||
|
||||
### Cauchy-Hadamard Theorem
|
||||
|
||||
The radius of convergence of a power series is given by
|
||||
|
||||
$$
|
||||
R=\frac{1}{\limsup_{n\to\infty} |a_n|^{1/n}}
|
||||
$$
|
||||
|
||||
### Derivative of power series
|
||||
|
||||
The derivative of a power series is given by
|
||||
|
||||
$$
|
||||
f'(z)=\sum_{n=1}^\infty n a_n (z-z_0)^{n-1}
|
||||
$$
|
||||
|
||||
### Cauchy Product (of power series)
|
||||
|
||||
Let $\sum_{n=0}^\infty a_n (z-z_0)^n$ and $\sum_{n=0}^\infty b_n (z-z_0)^n$ be two power series with radius of convergence $R_1$ and $R_2$ respectively.
|
||||
|
||||
Then the Cauchy product of the two series is given by
|
||||
|
||||
$$
|
||||
\sum_{n=0}^\infty c_n (z-z_0)^n
|
||||
$$
|
||||
|
||||
where
|
||||
|
||||
$$
|
||||
c_n = \sum_{k=0}^n a_k b_{n-k}
|
||||
$$
|
||||
|
||||
The radius of convergence of the Cauchy product is at least $\min(R_1,R_2)$.
|
||||
|
||||
## Chapter 6 Complex Integration
|
||||
|
||||
### Definition of Riemann Integral for complex functions
|
||||
@@ -616,19 +660,178 @@ $$
|
||||
\int_\gamma f(z) dz = \int_a^b f(\gamma(t))\gamma'(t) dt
|
||||
$$
|
||||
|
||||
### Properties of complex integrals
|
||||
### Favorite estimate
|
||||
|
||||
1. Linearity:
|
||||
Let $\gamma:[a,b]\to\mathbb{C}$ be a piecewise smooth curve, and let $f:[a,b]\to\mathbb{C}$ be a continuous complex-valued function. Let $M$ be a real number such that $|f(z)|\leq M$ for all $z\in\gamma$. Then
|
||||
|
||||
$$
|
||||
\left|\int_\gamma f(z) dz\right| \leq M\ell(\gamma)
|
||||
$$
|
||||
|
||||
where $\ell(\gamma)$ is the length of the curve $\gamma$.
|
||||
|
||||
## Chapter 7 Cauchy's Theorem
|
||||
|
||||
### Cauchy's Theorem
|
||||
|
||||
Let $\gamma$ be a closed curve in $\mathbb{C}$ and $U$ be a simply connected open subset of $\mathbb{C}$ containing $\gamma$ and its interior. Let $f$ be a holomorphic function on $U$. Then
|
||||
|
||||
$$
|
||||
\int_\gamma f(z) dz = 0
|
||||
$$
|
||||
|
||||
### Cauchy's Formula for a Circle
|
||||
|
||||
### Cauchy's Product
|
||||
Let $C$ be a counterclockwise oriented circle and let $f$ be holomorphic function defined in an open set containing $C$ and its interior. Then for any $z$ in the interior of $C$,
|
||||
|
||||
$$
|
||||
f(z)=\frac{1}{2\pi i}\int_C \frac{f(\zeta)}{\zeta-z} d\zeta
|
||||
$$
|
||||
|
||||
### Mean Value Property
|
||||
|
||||
Let the function $f$ be holomorphic on a disk $|z-z_0|<R$. Then for any $0<r<R$, let $C_r$ denote the circle with center $z_0$ and radius $r$. Then
|
||||
|
||||
$$
|
||||
f(z_0)=\frac{1}{2\pi}\int_0^{2\pi} f(z_0+re^{i\theta}) d\theta
|
||||
$$
|
||||
|
||||
The value of the function at the center of the disk is the average of the values of the function on the boundary of the disk.
|
||||
|
||||
### Cauchy Integrals
|
||||
|
||||
Let $\gamma$ be a piecewise smooth curve in $\mathbb{C}$ and let $\phi$ be a continuous complex-valued function on $\gamma$. Then the Cauchy integral of $\phi$ on $\gamma$ is the function $f$ defined in $C\setminus\gamma$ by
|
||||
|
||||
$$
|
||||
f(z)=\int_\gamma \frac{\phi(\zeta)}{\zeta-z} d\zeta
|
||||
$$
|
||||
|
||||
Cauchy Integral Formula for circle $C_r$:
|
||||
|
||||
$$
|
||||
f(z)=\frac{1}{2\pi i}\int_{C_r} \frac{f(\zeta)}{\zeta-z} d\zeta
|
||||
$$
|
||||
|
||||
> Example:
|
||||
>
|
||||
> Evaluate $$\int_{|z|=2} \frac{z}{z-1} dz$$
|
||||
>
|
||||
> Note that if we let $f(\zeta)=\zeta$ and $z=1$ is inside the circle, then we can use Cauchy Integral Formula for circle $C_r$ to evaluate the integral.
|
||||
>
|
||||
> So we have
|
||||
>
|
||||
> $$\int_{|z|=2} \frac{z}{z-1} dz = 2\pi i f(1) = 2\pi i$$
|
||||
|
||||
General Cauchy Integral Formula for circle $C_r$:
|
||||
|
||||
$$
|
||||
f^{(n)}(z)=\frac{n!}{2\pi i}\int_{C_r} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d\zeta
|
||||
$$
|
||||
|
||||
> Example:
|
||||
>
|
||||
> Evaluate $$\int_{C}\frac{\sin z}{z^{38}}dz$$
|
||||
>
|
||||
> Note that if we let $f(\zeta)=\sin \zeta$ and $z=0$ is inside the circle, then we can use General Cauchy Integral Formula for circle $C_r$ to evaluate the integral.
|
||||
>
|
||||
> So we have
|
||||
>
|
||||
> $$\int_{C}\frac{\sin z}{z^{38}}dz = \frac{2\pi i}{37!} f^{(37)}(0) = \frac{2\pi i}{37!} \sin ^{(37)}(0)$$
|
||||
>
|
||||
> Note that $\sin ^{(n)}(0)=\begin{cases} 0,& n\equiv 0 \pmod{4}\\
|
||||
1,& n\equiv 1 \pmod{4}\\
|
||||
0,& n\equiv 2 \pmod{4}\\
|
||||
-1,& n\equiv 3 \pmod{4}
|
||||
\end{cases}$
|
||||
>
|
||||
> So we have
|
||||
>
|
||||
> $$\int_{C}\frac{\sin z}{z^{38}}dz = \frac{2\pi i}{37!} \sin ^{(37)}(0) = \frac{2\pi i}{37!} \cdot 1 = \frac{2\pi i}{37!}$$
|
||||
|
||||
_Cauchy integral is a easier way to evaluate the integral._
|
||||
|
||||
### Liouville's Theorem
|
||||
|
||||
If a function $f$ is entire (holomorphic on $\mathbb{C}$) and bounded, then $f$ is constant.
|
||||
|
||||
### Finding power series of holomorphic functions
|
||||
|
||||
If $f$ is holomorphic on a disk $|z-z_0|<R$, then $f$ can be represented as a power series on the disk.
|
||||
|
||||
where $a_n=\frac{f^{(n)}(z_0)}{n!}$
|
||||
|
||||
> Example:
|
||||
>
|
||||
> If $q(z)=(z-1)(z-2)(z-3)$, find the power series of $q(z)$ centered at $z=0$.
|
||||
>
|
||||
> Note that $q(z)$ is holomorphic on $\mathbb{C}$ and $q(z)=0$ at $z=1,2,3$.
|
||||
>
|
||||
> So we can use the power series of $q(z)$ centered at $z=1$.
|
||||
>
|
||||
> To solve this, we can simply expand $q(z)=(z-1)(z-2)(z-3)$ and get $q(z)=z^3-6z^2+11z-6$.
|
||||
>
|
||||
> So we have $a_0=q(1)=-6$, $a_1=q'(1)=3z^2-12z+11=11$, $a_2=\frac{q''(1)}{2!}=\frac{6z-12}{2}=-3$, $a_3=\frac{q'''(1)}{3!}=\frac{6}{6}=1$.
|
||||
>
|
||||
> So the power series of $q(z)$ centered at $z=1$ is
|
||||
>
|
||||
> $$q(z)=-6+11(z-1)-3(z-1)^2+(z-1)^3$$
|
||||
|
||||
### Fundamental Theorem of Algebra
|
||||
|
||||
Every non-constant polynomial with complex coefficients has a root in $\mathbb{C}$.
|
||||
|
||||
Can be factored into linear factors:
|
||||
|
||||
$$
|
||||
p(z)=a_n(z-z_1)(z-z_2)\cdots(z-z_n)
|
||||
$$
|
||||
|
||||
We can treat holomorphic functions as polynomials.
|
||||
|
||||
$f$ has zero of order $m$ at $z_0$ if and only if $f(z)=(z-z_0)^m g(z)$ for some holomorphic $g(z)$ and $g(z_0)\neq 0$.
|
||||
|
||||
### Zeros of holomorphic functions
|
||||
|
||||
If $f$ is holomorphic on a disk $|z-z_0|<R$ and $f$ has a zero of order $m$ at $z_0$, then $f(z_0)=0$, $f'(z_0)=0$, $f''(z_0)=0$, $\cdots$, $f^{(m-1)}(z_0)=0$ and $f^{(m)}(z_0)\neq 0$.
|
||||
|
||||
And there exists a holomorphic function $g$ on the disk such that $f(z)=(z-z_0)^m g(z)$ and $g(z_0)\neq 0$.
|
||||
|
||||
> Example:
|
||||
>
|
||||
> Find zeros of $f(z)=\cos(z\frac{\pi}{2})$
|
||||
>
|
||||
> Note that $f(z)=0$ if and only if $z\frac{\pi}{2}=(2k+1)\frac{\pi}{2}$ for some integer $k$.
|
||||
>
|
||||
> So the zeros of $f(z)$ are $z=(2k+1)$ for some integer $k$.
|
||||
>
|
||||
> The order of the zero is $1$ since $f'(z)=-\frac{\pi}{2}\sin(z\frac{\pi}{2})$ and $f'(z)\neq 0$ for all $z=(2k+1)$.
|
||||
|
||||
If $f$ vanishes to infinite order at $z_0$ (that is, $f(z_0)=f'(z_0)=f''(z_0)=\cdots=0$), then $f(z)\equiv 0$ on the connected open set $U$ containing $z_0$.
|
||||
|
||||
### Identity Theorem
|
||||
|
||||
If $f$ and $g$ are holomorphic on a connected open set $U\subset\mathbb{C}$ and $f(z)=g(z)$ for all $z$ in a subset of $U$ that has a limit point in $U$, then $f(z)=g(z)$ for all $z\in U$.
|
||||
|
||||
Key: consider $h(z)=f(z)-g(z)$, prove $h(z)\equiv 0$ on $U$ by applying the zero of holomorphic function.
|
||||
|
||||
### Weierstrass Theorem
|
||||
|
||||
Limit of a sequence of holomorphic functions is holomorphic.
|
||||
|
||||
Let $f_n$ be a sequence of holomorphic functions on a domain $D\subset\mathbb{C}$ that converges uniformly to $f$ on every compact subset of $D$. Then $f$ is holomorphic on $D$.
|
||||
|
||||
### Maximum Modulus Principle
|
||||
|
||||
If $f$ is a non-constant holomorphic function on a domain $D\subset\mathbb{C}$, then $|f|$ does not attain a maximum value in $D$.
|
||||
|
||||
#### Corollary: Minimum Modulus Principle
|
||||
|
||||
If $f$ is a non-constant holomorphic function on a domain $D\subset\mathbb{C}$, then $\frac{1}{f}$ does not attain a minimum value in $D$.
|
||||
|
||||
### Schwarz Lemma
|
||||
|
||||
If $f$ is a holomorphic function on the unit disk $|z|<1$ and $|f(z)|\leq |z|$, then $|f'(0)|\leq 1$.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user