upgrade structures and migrate to nextra v4
This commit is contained in:
134
content/CSE442T/CSE442T_L16.md
Normal file
134
content/CSE442T/CSE442T_L16.md
Normal file
@@ -0,0 +1,134 @@
|
||||
# Lecture 16
|
||||
|
||||
## Chapter 3: Indistinguishability and Pseudorandomness
|
||||
|
||||
PRG exists $\implies$ Pseudorandom function family exists.
|
||||
|
||||
### Multi-message secure encryption
|
||||
|
||||
$Gen(1^n):$ Output $f_i:\{0,1\}^n\to \{0,1\}^n$ from PRF family
|
||||
|
||||
$Enc_i(m):$ Random $r\gets \{0,1\}^n$
|
||||
Ouput $(r,m\oplus f_i(r))$
|
||||
|
||||
$Dec_i(r,c):$ Output $c\oplus f_i(r)$
|
||||
|
||||
Proof of security:
|
||||
|
||||
Suppose $D$ distinguishes, for infinitly many $n$.
|
||||
|
||||
The encryption of $a$ pair of lists
|
||||
|
||||
(1) $\{i\gets Gen(1^n):(r_1,m_1\oplus f_i(r_1)),(r_2,m_2\oplus f_i(r_2)),(r_3,m_3\oplus f_i(r_3)),\ldots,(r_q,m_q\oplus f_i(r_q)), \}$
|
||||
|
||||
(2) $\{F\gets RF_n: (r_1,m_1\oplus F(r_1))\ldots\}$
|
||||
|
||||
(3) One-time pad $\{(r_1,m_1\oplus s_1)\}$
|
||||
|
||||
(4) One-time pad $\{(r_1,m_1'\oplus s_1)\}$
|
||||
|
||||
If (1) (2) distinguished,
|
||||
|
||||
$(r_1,f_i(r_1)),\ldots,(r_q,f_i(r_q))$ is distinguished from
|
||||
|
||||
$(r_1,F(r_1)),\ldots, (r_q,F(r_q))$
|
||||
|
||||
So $D$ distinguishing output of $r_1,\ldots, r_q$ of PRF from the RF, this contradicts with definition of PRF.
|
||||
|
||||
QED
|
||||
|
||||
Noe we have
|
||||
|
||||
(RSA assumption and Discrete log assumption for one-way function exists.)
|
||||
|
||||
One-way function exists $\implies$
|
||||
|
||||
Pseudo random generator exists $\implies$
|
||||
|
||||
Pseudo random function familiy exists $\implies$
|
||||
|
||||
Mult-message secure encryption exists.
|
||||
|
||||
### Public key cryptography
|
||||
|
||||
1970s.
|
||||
|
||||
The goal was to agree/share a key without meeting in advance
|
||||
|
||||
#### Diffie-Helmann Key exchange
|
||||
|
||||
A and B create a secret key together without meeting.
|
||||
|
||||
Rely on discrete log assumption.
|
||||
|
||||
They pulicly agree on modulus $p$ and generator $g$.
|
||||
|
||||
Alice picks random exponent $a$ and computes $g^a\mod p$
|
||||
|
||||
Bob picks random exponent $b$ and computes $g^b\mod p$
|
||||
|
||||
and they send result to each other.
|
||||
|
||||
And Alice do $(g^b)^a$ where Bob do $(g^a)^b$.
|
||||
|
||||
#### Diffie-Helmann assumption
|
||||
|
||||
With $g^a,g^b$ no one can compute $g^{ab}$.
|
||||
|
||||
#### Public key encryption scheme
|
||||
|
||||
Ideas: The recipient Bob distributes opened Bob-locks
|
||||
|
||||
- Once closed, only Bob can open it.
|
||||
|
||||
Public-key encryption scheme:
|
||||
|
||||
1. $Gen(1^n):$ Outputs $(pk,sk)$
|
||||
2. $Enc_{pk}(m):$ Efficient for all $m,pk$
|
||||
3. $Dec_{sk}(c):$ Efficient for all $c,sk$
|
||||
4. $P[(pk,sk)\gets Gen(1^n):Dec_{sk}(Enc_{pk}(m))=m]=1$
|
||||
|
||||
Let $A, E$ knows $pk$ not $sk$ and $B$ knows $pk,sk$.
|
||||
|
||||
Adversary can now encrypt any message $m$ with the public key.
|
||||
|
||||
- Perfect secrecy impossible
|
||||
- Randomness necessary
|
||||
|
||||
#### Security of public key
|
||||
|
||||
$\forall n.u.p.p.t D,\exists \epsilon(n)$ such that $\forall n,m_0,m_1\in \{0,1\}^n$
|
||||
|
||||
$$
|
||||
\{(pk,sk)\gets Gen(1^n):(pk,Enc_{pk}(m_0))\} \{(pk,sk)\gets Gen(1^n):(pk,Enc_{pk}(m_1))\}
|
||||
$$
|
||||
|
||||
are distinguished by at most $\epsilon (n)$
|
||||
|
||||
This "single" message security implies multi-message security!
|
||||
|
||||
_Left as exercise_
|
||||
|
||||
We will achieve security in sending a single bit $0,1$
|
||||
|
||||
Time for trapdoor permutation. (EX. RSA)
|
||||
|
||||
#### Encryption Scheme via Trapdoor Permutation
|
||||
|
||||
Given family of trapdoor permutation $\{f_i\}$ with hardcore bit $h(i)$
|
||||
|
||||
$Gen(1^n):(f_i,f_i^{-1})$, where $f_i^{-1}$ uses trapdoor permutation of $t$
|
||||
|
||||
$Output ((f_i,h_i),f_i^{-1})$
|
||||
|
||||
$m=0$ or $1$.
|
||||
|
||||
$Enc_{pk}(m):r\gets\{0,1\}^n$
|
||||
|
||||
$Output (f_i(r),h_i(r)+m)$
|
||||
|
||||
$Dec_{sk}(c_1,c_2)$
|
||||
|
||||
$r=f_i^{-1}(c_1)$
|
||||
|
||||
$m=c_2+h_1(r)$
|
||||
Reference in New Issue
Block a user