upgrade structures and migrate to nextra v4
This commit is contained in:
148
content/Math429/Math429_L10.md
Normal file
148
content/Math429/Math429_L10.md
Normal file
@@ -0,0 +1,148 @@
|
||||
# Lecture 10
|
||||
|
||||
## Chapter III Linear maps
|
||||
|
||||
**Assumption: $U,V,W$ are vector spaces (over $\mathbb{F}$)**
|
||||
|
||||
### Vector Space of Linear Maps 3A
|
||||
|
||||
Review
|
||||
|
||||
#### Theorem 3.21 (The Fundamental Theorem of Linear Maps, Rank-nullity Theorem)
|
||||
|
||||
Suppose $V$ is finite dimensional, and $T\in \mathscr{L}(V,W)$, then $range(T)$ is finite dimensional ($W$ don't need to be finite dimensional). and
|
||||
|
||||
$$
|
||||
dim(V)=dim(null (T))+dim(range(T))
|
||||
$$
|
||||
|
||||
Proof:
|
||||
|
||||
Let $u_1,...,u_m$ be a basis for $null(T)$, then we extend to a basis of $V$ given by $u_1,...,u_m,v_1,...,v_m$, we have $dim(V)=m+n$. Claim that $Tv_1,...,Tv_n$ forms a basis for $range (T)$. Need to show
|
||||
|
||||
* Linearly independent. (in Homework 3)
|
||||
* These span $range(T)$.
|
||||
|
||||
Let $w\in range(T)$ the there exists $v\in V$ such that $Tv=W$, $u_1,...,u_m,v_1,...,v_m$ are basis so $\exists a_1,...,a_m,b_1,...,b_n$ such that $v=a_1u_1+...+a_mu_m+b_1v_1+...+b_n v_n$. $Tv=a_1Tu_1+...+a_mTu_m+b_1Tu_1+...+b_nTv_n$.
|
||||
|
||||
Since $u_k\in null(T)$, So $Tv_1,...,Tv_n$ spans range $T$ and so form a basis. Thus $range(T)$ is finite dimensional and $dim(range(T))=n$. So $dim(V)=dim(null (T))+dim(range(T))$
|
||||
|
||||
#### Theorem 3.22
|
||||
|
||||
Suppose $V,W$ are finite dimensional with $dim(V)>dim(W)$, then there are no injective maps from $V$ to $W$.
|
||||
|
||||
#### Theorem 3.24
|
||||
|
||||
Suppose $V,W$ are finite dimensional with $dim(V)<dim(W)$, then there are no surjective maps from $V$ to $W$.
|
||||
|
||||
Ideas of Proof: relies on **Theorem 3.21** $dim(null(T))>0$
|
||||
|
||||
### Linear Maps and Linear Systems 3EX-1
|
||||
|
||||
Suppose we have a homogeneous linear system * with $m$ equation and $n$ variables.
|
||||
|
||||
$$
|
||||
A_{11} x_1+ ... + A_{1n} x_n=0\\
|
||||
...\\
|
||||
A_{m1} x_1+ ... + A_{mn} x_n=0
|
||||
$$
|
||||
|
||||
which is equivalent to
|
||||
|
||||
$$
|
||||
A\begin{bmatrix}
|
||||
x_1\\...\\x_n
|
||||
\end{bmatrix}=\vec{0}
|
||||
$$
|
||||
|
||||
also equivalent to
|
||||
|
||||
$$
|
||||
T(v)=0,\textup{ for some }T
|
||||
$$
|
||||
|
||||
$$
|
||||
T(x_1,...,x_n)=(A_{11} x_1+ ... + A_{1n},...,A_{m1} x_1+ ... + A_{mn} x_n),T\in \mathscr{L}(\mathbb{R}^n,\mathbb{R}^m)
|
||||
$$
|
||||
|
||||
Solution to * is $null(T)$.
|
||||
|
||||
#### Proposition 3.26
|
||||
|
||||
A homogeneous linear system with more variables than equations has non-zero solutions.
|
||||
|
||||
Proof:
|
||||
|
||||
Using $T$ as above, note that since $n>m$, use **Theorem 3.22**, implies that $T$ cannot be injective. So, $null (T)$ contains a non-zero vector.
|
||||
|
||||
#### Proposition 3.28
|
||||
|
||||
An in-homogenous system with more equations than variables has no solutions for some choices of constants. ($A\vec{x}=\vec{b}$ for some $\vec{b}$ this has no solution)
|
||||
|
||||
### Matrices 3A
|
||||
|
||||
#### Definition 3.29
|
||||
|
||||
For $m,n>0$ and $m\times n$ matrix $A$ is a rectangular array with elements of the $\mathbb{F}$ given by
|
||||
|
||||
$$
|
||||
A=\begin{pmatrix}
|
||||
A_{1,1}& ...&A_{1,n}\\
|
||||
... & & ...\\
|
||||
A_{n,1}&...&A_{m,n}\\
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
### Operations on matrices
|
||||
|
||||
Addition:
|
||||
|
||||
$$
|
||||
A+B=\begin{pmatrix}
|
||||
A_{1,1}+B_{1,1}& ...&A_{1,n}+B_{1,n}\\
|
||||
... & & ...\\
|
||||
A_{n,1}+A_{n,1}&...&A_{m,n}+B_{m,n}\\
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
**for $A+B$, $A,B$ need to be the same size**
|
||||
|
||||
Scalar multiplication:
|
||||
|
||||
$$
|
||||
\lambda A=\begin{pmatrix}
|
||||
\lambda A_{1,1}& ...& \lambda A_{1,n}\\
|
||||
... & & ...\\
|
||||
\lambda A_{n,1}&...& \lambda A_{m,n}\\
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
#### Definition 3.39
|
||||
|
||||
$\mathbb{F}^{m,n}$ is the set of $m$ by $n$ matrices.
|
||||
|
||||
#### Theorem 3.40
|
||||
|
||||
$\mathbb{F}^{m,n}$ is a vector space (over $\mathbb{F}$) with $dim(\mathbb{F}^{m,n})=m\times n$
|
||||
|
||||
### Matrix multiplication 3EX-2
|
||||
|
||||
Let $A$ be a $m\times n$ matrix and $B$ be an $n\times s$ matrix
|
||||
|
||||
$$
|
||||
(A,B)_{i,j}= \sum^n_{r=1} A_{i,r}\cdot B_{r,j}
|
||||
$$
|
||||
|
||||
Claim:
|
||||
|
||||
This formula comes from multiplication of linear maps.
|
||||
|
||||
#### Definition 3.44
|
||||
|
||||
Linear maps to matrices, let $V$, $W$, $Tv_i$ written in terms of $w_i$.
|
||||
|
||||
$$
|
||||
M(T)=\begin{pmatrix}
|
||||
Tv_1\vert Tv_2\vert ...\vert Tv_n
|
||||
\end{pmatrix}
|
||||
$$
|
||||
Reference in New Issue
Block a user