change epsilon expression
This commit is contained in:
@@ -32,7 +32,7 @@ $$
|
||||
Let $e$ be the exponents
|
||||
|
||||
$$
|
||||
P[p,q\gets \Pi_n;N\gets p\cdot q;e\gets \mathbb{Z}_{\phi(N)}^*;y\gets \mathbb{N}_n;x\gets \mathcal{A}(N,e,y);x^e=y\mod N]<\varepsilon(n)
|
||||
P[p,q\gets \Pi_n;N\gets p\cdot q;e\gets \mathbb{Z}_{\phi(N)}^*;y\gets \mathbb{N}_n;x\gets \mathcal{A}(N,e,y);x^e=y\mod N]<\epsilon(n)
|
||||
$$
|
||||
|
||||
#### Theorem RSA Algorithm
|
||||
@@ -190,7 +190,7 @@ $\mathcal{F}=\{f_i:D_i\to R_i\}_{i\in I}$
|
||||
2. $(i,t)\gets Gen(1^n)$ efficient. ($i\in I$ paired with $t$), $t$ is the "trapdoor info"
|
||||
3. $\forall i,D_i$ can be sampled efficiently.
|
||||
4. $\forall i,\forall x,f_i(x)$ can be computed in polynomial time.
|
||||
5. $P[(i,t)\gets Gen(1^n);y\gets R_i:f_i(\mathcal{A}(1^n,i,y))=y]<\varepsilon(n)$ (note: $\mathcal{A}$ is not given $t$)
|
||||
5. $P[(i,t)\gets Gen(1^n);y\gets R_i:f_i(\mathcal{A}(1^n,i,y))=y]<\epsilon(n)$ (note: $\mathcal{A}$ is not given $t$)
|
||||
6. (trapdoor) There is a p.p.t. $B$ such that given $i,y,t$, B always finds x such that $f_i(x)=y$. $t$ is the "trapdoor info"
|
||||
|
||||
#### Theorem RSA is a trapdoor
|
||||
|
||||
Reference in New Issue
Block a user