change epsilon expression
This commit is contained in:
@@ -9,7 +9,7 @@ $$
|
||||
$$
|
||||
|
||||
- If $\mu(n)\geq \frac{1}{p(n)}\gets poly(n)$ for infinitely many n, then $\{X_n\}$ and $\{Y_n\}$ are distinguishable.
|
||||
- Otherwise, indistinguishable ($|diff|<\varepsilon(n)$)
|
||||
- Otherwise, indistinguishable ($|diff|<\epsilon(n)$)
|
||||
|
||||
Property: Closed under efficient procedures.
|
||||
|
||||
@@ -58,7 +58,7 @@ $$
|
||||
|
||||
### Next bit test (NBT)
|
||||
|
||||
We say $\{X_n\}$ passes the next bit test if $\forall i\in\{0,1,...,l(n)-1\}$ on $\{0,1\}^{l(n)}$ and for all adversaries $\mathcal{A}:P[t\gets X_n:\mathcal{A}(t_1,t_2,...,t_i)=t_{i+1}]\leq \frac{1}{2}+\varepsilon(n)$ (given first $i$ bit, the probability of successfully predicts $i+1$ th bit is almost random $\frac{1}{2}$)
|
||||
We say $\{X_n\}$ passes the next bit test if $\forall i\in\{0,1,...,l(n)-1\}$ on $\{0,1\}^{l(n)}$ and for all adversaries $\mathcal{A}:P[t\gets X_n:\mathcal{A}(t_1,t_2,...,t_i)=t_{i+1}]\leq \frac{1}{2}+\epsilon(n)$ (given first $i$ bit, the probability of successfully predicts $i+1$ th bit is almost random $\frac{1}{2}$)
|
||||
|
||||
Note that for any $\mathcal{A}$, and any $i$,
|
||||
|
||||
@@ -71,7 +71,7 @@ If $\{X_n\}\approx\{U_{l(n)}\}$ (pseudorandom), then $X_n$ must pass NBT for all
|
||||
Otherwise $\exists \mathcal{A},i$ where for infinitely many $n$,
|
||||
|
||||
$$
|
||||
P[t\gets X_n:\mathcal{A}(t_1,t_2,...,t_i)=t_{i+1}]\leq \frac{1}{2}+\varepsilon(n)
|
||||
P[t\gets X_n:\mathcal{A}(t_1,t_2,...,t_i)=t_{i+1}]\leq \frac{1}{2}+\epsilon(n)
|
||||
$$
|
||||
|
||||
We can build a distinguisher $D$ from $\mathcal{A}$.
|
||||
@@ -147,6 +147,6 @@ $f(x)||x$
|
||||
|
||||
Not all bits of $x$ would be hard to predict.
|
||||
|
||||
**Hard-core bit:** One bit of information about $x$ which is hard to determine from $f(x)$. $P[$ success $]\leq \frac{1}{2}+\varepsilon(n)$
|
||||
**Hard-core bit:** One bit of information about $x$ which is hard to determine from $f(x)$. $P[$ success $]\leq \frac{1}{2}+\epsilon(n)$
|
||||
|
||||
Depends on $f(x)$
|
||||
|
||||
Reference in New Issue
Block a user