change epsilon expression
This commit is contained in:
@@ -2,16 +2,16 @@
|
||||
|
||||
## Recap
|
||||
|
||||
Negligible function $\varepsilon(n)$ if $\forall c>0,\exist N$ such that $n>N$, $\varepsilon (n)<\frac{1}{n^c}$
|
||||
Negligible function $\epsilon(n)$ if $\forall c>0,\exist N$ such that $n>N$, $\epsilon (n)<\frac{1}{n^c}$
|
||||
|
||||
Ex: $\varepsilon(n)=2^{-n},\varepsilon(n)=\frac{1}{n^{\log (\log n)}}$
|
||||
Ex: $\epsilon(n)=2^{-n},\epsilon(n)=\frac{1}{n^{\log (\log n)}}$
|
||||
|
||||
### Strong One-Way Function
|
||||
|
||||
1. $\exists$ a P.P.T. that computes $f(x),\forall x\in\{0,1\}^n$
|
||||
2. $\forall a$ adversaries, $\exists \varepsilon(n),\forall n$.
|
||||
2. $\forall a$ adversaries, $\exists \epsilon(n),\forall n$.
|
||||
$$
|
||||
P[x\gets \{0,1\}^n;y=f(x):f(a(y,1^n))=y]<\varepsilon(n)
|
||||
P[x\gets \{0,1\}^n;y=f(x):f(a(y,1^n))=y]<\epsilon(n)
|
||||
$$
|
||||
|
||||
_That is, the probability of success guessing should decreasing as encrypted message increase..._
|
||||
@@ -28,7 +28,7 @@ Negation:
|
||||
|
||||
$\exists a$, $P[x\gets \{0,1\}^n;y=f(x):f(a(y,1^n))=y]=\mu_a(n)$ is not a negligible function.
|
||||
|
||||
That is, $\exists c>0,\forall N \exists n>N \varepsilon(n)>\frac{1}{n^c}$
|
||||
That is, $\exists c>0,\forall N \exists n>N \epsilon(n)>\frac{1}{n^c}$
|
||||
|
||||
$\mu_a(n)>\frac{1}{n^c}$ for infinitely many $n$. or infinitely often.
|
||||
|
||||
@@ -41,7 +41,7 @@ $\mu_a(n)>\frac{1}{n^c}$ for infinitely many $n$. or infinitely often.
|
||||
$f:\{0,1\}^n\to \{0,1\}^*$
|
||||
|
||||
1. $\exists$ a P.P.T. that computes $f(x),\forall x\in\{0,1\}^n$
|
||||
2. $\forall a$ adversaries, $\exists \varepsilon(n),\forall n$.
|
||||
2. $\forall a$ adversaries, $\exists \epsilon(n),\forall n$.
|
||||
$$
|
||||
P[x\gets \{0,1\}^n;y=f(x):f(a(y,1^n))=y]<1-\frac{1}{p(n)}
|
||||
$$
|
||||
@@ -116,14 +116,14 @@ The only way to efficiently factorizing the product of prime is to iterate all t
|
||||
|
||||
In other words:
|
||||
|
||||
$\forall a\exists \varepsilon(n)$ such that $\forall n$. $P[p_1\gets \prod n_j]$
|
||||
$\forall a\exists \epsilon(n)$ such that $\forall n$. $P[p_1\gets \prod n_j]$
|
||||
|
||||
We'll show this is a weak one-way function under the Factoring Assumption.
|
||||
|
||||
$\forall a,\exists \varepsilon(n)$ such that $\forall n$,
|
||||
$\forall a,\exists \epsilon(n)$ such that $\forall n$,
|
||||
|
||||
$$
|
||||
P[p_1\gets \Pi_n;p_2\gets \Pi_n;N=p_1\cdot p_2:a(n)=\{p_1,p_2\}]<\varepsilon(n)
|
||||
P[p_1\gets \Pi_n;p_2\gets \Pi_n;N=p_1\cdot p_2:a(n)=\{p_1,p_2\}]<\epsilon(n)
|
||||
$$
|
||||
|
||||
where $\Pi_n=\{$ all primes $p<2^n\}$
|
||||
Reference in New Issue
Block a user