typo fix and add extra contents
This commit is contained in:
@@ -61,31 +61,31 @@ WLOG $\alpha>\beta$ and $\beta>\alpha$.
|
||||
|
||||
EOP
|
||||
|
||||
We write $SupE$ to denote the LUB of $E$.
|
||||
We write $\sup E$ to denote the LUB of $E$.
|
||||
|
||||
This also applies to $GLB$ (greatest lower bound) and infinum of $E$
|
||||
|
||||
#### Example
|
||||
Example:
|
||||
|
||||
1. $S=\mathbb{Q}, E=\{1,2,3\}$ ($E$ is bounded above)
|
||||
* $SupE=3$, $Inf E=1$
|
||||
* $\sup E=3$, $\inf E=1$
|
||||
2. $S=\mathbb{Q}, E=\{x\in \mathbb{Q}:0<x<1\}$ ($E$ is bounded above)
|
||||
* $SupE=3$, $Inf E=1$
|
||||
* $\sup E=3$, $\inf E=1$
|
||||
|
||||
$SupE$ and $Inf E=1$ don't have to $\in E$
|
||||
$\sup E$ and $\inf E=1$ don't have to $\in E$
|
||||
|
||||
3. $S=\mathbb{Q}, E=\{x\in \mathbb{Q}:0<x\}$ ($E$ is not bounded above)
|
||||
* $SupE=\infty$ or not defined, $Inf E=0$
|
||||
* $\sup E=\infty$ or not defined, $\inf E=0$
|
||||
4. $S=\mathbb{Q}, E=\phi$.
|
||||
* $SupE=-\infty$ or not defined, $Inf E=\infty$ or not defined, we don't put $\infty$ in $\mathbb{Q}$
|
||||
* $\sup E=-\infty$ or not defined, $\inf E=\infty$ or not defined, we don't put $\infty$ in $\mathbb{Q}$
|
||||
|
||||
Important example
|
||||
|
||||
5. $S=\mathbb{Q}, A=\{p\leq \mathbb{Q}:p>0, p^2<2\}$.
|
||||
* $A$ is not empty and bounded above. However, $Sup A$ des not exists.
|
||||
* $A$ is not empty and bounded above. However, $\sup A$ des not exists.
|
||||
|
||||
If $S=\mathbb{R}, A=\{p\leq \mathbb{Q}:p>0, p^2<2\}$.
|
||||
* $A$ is not empty and bounded above. However, $Sup A=\sqrt{2}$.
|
||||
* $A$ is not empty and bounded above. However, $\sup A=\sqrt{2}$.
|
||||
|
||||
#### Least upper bound property (LUBP)
|
||||
|
||||
@@ -93,7 +93,7 @@ if $\forall E\subset S$ that tis non-empty and bounded above, $\exist Sup E\in S
|
||||
|
||||
#### Greatest upper bound property (GLBP)
|
||||
|
||||
S has greatest lower bound property (GLBP) if $\exist E\subset S$ that is non-empty and bounded below, $\exists Inf E\in S$
|
||||
S has greatest lower bound property (GLBP) if $\exist E\subset S$ that is non-empty and bounded below, $\exists \inf E\in S$
|
||||
|
||||
$\mathbb{Q}$ does not have LUBP and GLBP.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user