typo fix and add extra contents
This commit is contained in:
@@ -2,7 +2,7 @@
|
||||
|
||||
## Recap
|
||||
|
||||
### Hankel developed Riemann's integrabilty criterion.
|
||||
### Hankel developed Riemann's integrability criterion
|
||||
|
||||
#### Definition: Oscillation
|
||||
|
||||
@@ -22,9 +22,13 @@ $$
|
||||
|
||||
where $\mathcal{P}=\{i:\omega(f,I_i)>\sigma\}$.
|
||||
|
||||
Proof as homework questions.
|
||||
Proof:
|
||||
|
||||
#### Corollary 2.4
|
||||
To prove Riemann's Integrability Criterion, we need to show that a bounded function $f$ is Riemann integrable if and only if for every $\sigma, \epsilon > 0$, there exists a partition $P$ of $[a, b]$ such that the sum of the lengths of the intervals where the oscillation exceeds $\sigma$ is less than $\epsilon$.
|
||||
|
||||
EOP
|
||||
|
||||
#### Proposition 2.4
|
||||
|
||||
For point $c\in[a,b]$, define the oscillation at $c$ as
|
||||
|
||||
@@ -54,7 +58,7 @@ $$
|
||||
c_e(S) = \inf_{c\in C_s}\ell(C)
|
||||
$$
|
||||
|
||||
where $\C_s$ is the set of all finite covers of $S$.
|
||||
where $C_s$ is the set of all finite covers of $S$.
|
||||
|
||||
Example:
|
||||
|
||||
|
||||
Reference in New Issue
Block a user