updates
This commit is contained in:
@@ -4,14 +4,51 @@
|
|||||||
|
|
||||||
This part may not be a part of "mathematical" research. But that's what I initially begin with.
|
This part may not be a part of "mathematical" research. But that's what I initially begin with.
|
||||||
|
|
||||||
## Superdense coding
|
|
||||||
|
|
||||||
> [!TIP]
|
> [!TIP]
|
||||||
>
|
>
|
||||||
> A helpful resource is [The Functional Analysis of Quantum Information Theory](https://arxiv.org/pdf/1410.7188) Section 2.2
|
> A helpful resource is [The Functional Analysis of Quantum Information Theory](https://arxiv.org/pdf/1410.7188) Section 2.2
|
||||||
>
|
>
|
||||||
> Or another way in quantum computing [Quantum Computing and Quantum Information](https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview) Section 2.3
|
> Or another way in quantum computing [Quantum Computing and Quantum Information](https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview) Section 2.3
|
||||||
|
|
||||||
|
## References to begin with
|
||||||
|
|
||||||
|
### Quantum computing and quantum information
|
||||||
|
|
||||||
|
Every quantum bit is composed of two orthogonal states, denoted by $|0\rangle$ and $|1\rangle$.
|
||||||
|
|
||||||
|
Each state
|
||||||
|
|
||||||
|
$$
|
||||||
|
\varphi=\alpha|0\rangle+\beta|1\rangle
|
||||||
|
$$
|
||||||
|
|
||||||
|
where $\alpha$ and $\beta$ are complex numbers, and $|\alpha|^2+|\beta|^2=1$.
|
||||||
|
|
||||||
|
### Logic gates
|
||||||
|
|
||||||
|
All the logic gates are unitary operators in $\mathbb{C}^{2\times 2}$.
|
||||||
|
|
||||||
|
Example: the NOT gate is represented by the following matrix:
|
||||||
|
|
||||||
|
$$
|
||||||
|
NOT=\begin{pmatrix}
|
||||||
|
0 & 1 \\
|
||||||
|
1 & 0
|
||||||
|
\end{pmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Hadamard gate is represented by the following matrix:
|
||||||
|
|
||||||
|
$$
|
||||||
|
H=\frac{1}{\sqrt{2}}\begin{pmatrix}
|
||||||
|
1 & 1 \\
|
||||||
|
1 & -1
|
||||||
|
\end{pmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Superdense coding
|
||||||
|
|
||||||
|
|
||||||
## Quantum error correcting codes
|
## Quantum error correcting codes
|
||||||
|
|
||||||
This part is intentionally left blank and may be filled near the end of the semester, by assignments given in CSE5313.
|
This part is intentionally left blank and may be filled near the end of the semester, by assignments given in CSE5313.
|
||||||
|
|||||||
@@ -278,6 +278,40 @@ This operator is a vector field.
|
|||||||
>
|
>
|
||||||
> - [Introduction to Complex Manifolds](https://bookstore.ams.org/gsm-244)
|
> - [Introduction to Complex Manifolds](https://bookstore.ams.org/gsm-244)
|
||||||
|
|
||||||
|
### Holomorphic vector bundles
|
||||||
|
|
||||||
|
#### Definition of real vector bundle
|
||||||
|
|
||||||
|
Let $M$ be a topological space, A **real vector bundle** over $M$ is a topological space $E$ together with a surjective continuous map $\pi:E\to M$ such that:
|
||||||
|
|
||||||
|
1. For each $p\in M$, the fiber $E_p=\pi^{-1}(p)$ over $p$ is endowed with the structure of a $k$-dimensional real vector space.
|
||||||
|
2. For each $p\in M$, there exists an open neighborhood $U$ of $p$ and a homeomorphism $\Phi: \pi^{-1}(U)\to U\times \mathbb{R}^k$ called a **local trivialization** such that:
|
||||||
|
- $\pi^{-1}(U)=\pi$(where $\pi_U:U\times \mathbb{R}^k\to \pi^{-1}(U)$ is the projection map)
|
||||||
|
- For each $q\in U$, the map $\Phi_q: E_q\to \mathbb{R}^k$ is isomorphism from $E_q$ to $\{q\}\times \mathbb{R}^k\cong \mathbb{R}^k$.
|
||||||
|
|
||||||
|
#### Definition of complex vector bundle
|
||||||
|
|
||||||
|
Let $M$ be a topological space, A **complex vector bundle** over $M$ is a real vector bundle $E$ together with a complex structure on each fiber $E_p$ that is compatible with the complex vector space structure.
|
||||||
|
|
||||||
|
1. For each $p\in M$, the fiber $E_p=\pi^{-1}(p)$ over $p$ is endowed with the structure of a $k$-dimensional complex vector space.
|
||||||
|
2. For each $p\in M$, there exists an open neighborhood $U$ of $p$ and a homeomorphism $\Phi: \pi^{-1}(U)\to U\times \mathbb{C}^k$ called a **local trivialization** such that:
|
||||||
|
- $\pi^{-1}(U)=\pi$(where $\pi_U:U\times \mathbb{C}^k\to \pi^{-1}(U)$ is the projection map)
|
||||||
|
- For each $q\in U$, the map $\Phi_q: E_q\to \mathbb{C}^k$ is isomorphism from $E_q$ to $\{q\}\times \mathbb{C}^k\cong \mathbb{C}^k$.
|
||||||
|
|
||||||
|
#### Definition of smooth complex vector bundle
|
||||||
|
|
||||||
|
If above $M$ and $E$ are smooth manifolds, $\pi$ is a smooth map, and the local trivializations can be chosen to be diffeomorphisms (smooth bijections with smooth inverses), then the vector bundle is called a **smooth complex vector bundle**.
|
||||||
|
|
||||||
|
#### Definition of holomorphic vector bundle
|
||||||
|
|
||||||
|
If above $M$ and $E$ are complex manifolds, $\pi$ is a holomorphic map, and the local trivializations can be chosen to be biholomorphic maps (holomorphic bijections with holomorphic inverses), then the vector bundle is called a **holomorphic vector bundle**.
|
||||||
|
|
||||||
|
### Holomorphic line bundles
|
||||||
|
|
||||||
|
A **holomorphic line bundle** is a holomorphic vector bundle with rank 1.
|
||||||
|
|
||||||
|
> Intuitively, a holomorphic line bundle is a complex vector bundle with a complex structure on each fiber.
|
||||||
|
|
||||||
### Riemann-Roch Theorem (Theorem 9.64)
|
### Riemann-Roch Theorem (Theorem 9.64)
|
||||||
|
|
||||||
Suppose $M$ is a connected compact Riemann surface of genus $g$, and $L\to M$ is a holomorphic line bundle. Then
|
Suppose $M$ is a connected compact Riemann surface of genus $g$, and $L\to M$ is a holomorphic line bundle. Then
|
||||||
|
|||||||
8
docker/Jenkinsfile
vendored
8
docker/Jenkinsfile
vendored
@@ -77,14 +77,18 @@ pipeline {
|
|||||||
script: 'docker images -qf reference=\${imageNameCSE}',
|
script: 'docker images -qf reference=\${imageNameCSE}',
|
||||||
returnStdout: true
|
returnStdout: true
|
||||||
)
|
)
|
||||||
echo "Image Name: " + "${imageName}"
|
|
||||||
echo "Old Image: ${oldImageID}"
|
|
||||||
if ( "${oldImageIDMath}" != '' ) {
|
if ( "${oldImageIDMath}" != '' ) {
|
||||||
|
echo "Removing old image ${oldImageIDMath}"
|
||||||
|
echo "Image Name: " + "${imageNameMath}"
|
||||||
|
echo "Old Image: ${oldImageIDMath}"
|
||||||
sh 'docker rmi ${oldImageIDMath}'
|
sh 'docker rmi ${oldImageIDMath}'
|
||||||
}else{
|
}else{
|
||||||
echo "Warning: ${imageNameMath} does not exist"
|
echo "Warning: ${imageNameMath} does not exist"
|
||||||
}
|
}
|
||||||
if ( "${oldImageIDCSE}" != '' ) {
|
if ( "${oldImageIDCSE}" != '' ) {
|
||||||
|
echo "Removing old image ${oldImageIDCSE}"
|
||||||
|
echo "Image Name: " + "${imageNameCSE}"
|
||||||
|
echo "Old Image: ${oldImageIDCSE}"
|
||||||
sh 'docker rmi ${oldImageIDCSE}'
|
sh 'docker rmi ${oldImageIDCSE}'
|
||||||
}else{
|
}else{
|
||||||
echo "Warning: ${imageNameCSE} does not exist"
|
echo "Warning: ${imageNameCSE} does not exist"
|
||||||
|
|||||||
Reference in New Issue
Block a user